
Hideaki Takeda / National Institute of Informatics

Description Logics & OWL

Hideaki Takeda
takeda@nii.ac.jp

National Institute of Informatics

mailto:takeda@nii.ac.jp

Hideaki Takeda / National Institute of Informatics

Types of Ontologies
l Upper (top-level) ontology vs. Domain ontology

n Upper Ontology: A common ontology throughout all domains
n Domain Ontology: An ontology which is meaningful in a specific

domain
l Object ontology vs. Task ontology

n Object Ontology: An ontology on “things” and “events”
n Task Ontology: An ontology on “doing”

Hideaki Takeda / National Institute of Informatics

A Layer model for Semantic Web
l OWL

n General concept description language
u Logical consistency
u Various class expressions
u Various constraints

l RDF Schema
n Addition of “concept” to RDF

u class-subclass, constraints
l RDF (Resource Description Framework)

n The primitive model for metadata description
u SVO model
u Entity-Relation Model
u Semantic net

Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/

Hideaki Takeda / National Institute of Informatics

Conceptualization
object

box

red box blue box yellow box

on_desk(A)
on(A, B)
put(A,B)

object

box

box
color:{red, blue, yellow}

on_desk(A)
on(A, B)
put(A,B)

object

box desk

on(A/box, B/object)
put(A/box,B/object)

box
color:{red, blue, yellow}

Trade off between generality and efficiency
There are many possible ways to conceptualize the target world

Hideaki Takeda / National Institute of Informatics

Ontology in Information System
An ontology is an explicit specification of a conceptualization

[Gruber]

l An ontology is an explicit specification of a conceptualization. The term is
borrowed from philosophy, where an Ontology is a systematic account of
Existence. For AI systems, what "exists" is that which can be represented.
When the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe
of discourse. This set of objects, and the describable relationships among
them, are reflected in the representational vocabulary with which a
knowledge-based program represents knowledge. Thus, in the context of
AI, we can describe the ontology of a program by defining a set of
representational terms. In such an ontology, definitions associate the names
of entities in the universe of discourse (e.g., classes, relations, functions, or
other objects) with human-readable text describing what the names mean,
and formal axioms that constrain the interpretation and well-formed use of
these terms. Formally, an ontology is the statement of a logical theory.

Hideaki Takeda / National Institute of Informatics

Description Logic
l What is Description Logic?

n Representation for structured knowledge
level

u Concepts, relations between concepts,
inheritance

n Logical formalization
l History

Semantic Networks
[Quillian66]

- nodes, association
- mixture of representation levels
- no semantics

Frames
[Minsky81]

- concepts, slots, (facets)
- object-oriented
- mixture of descriptions and assertions
- not good semantics

KL-ONE
[Brachman78]

- concepts, roles, inheritance
- separation from logical/conceptual
levels

DL formalization
[Brachman&Levesque84]-

- formal semantics
- tradeoff of expressiveness and
computational complexity

- various languages and implementations
LOOM, CLASSIC, KRIS

is-a

Hideaki Takeda / National Institute of Informatics

Concept

Mother

Person
Female

ParentWoman

hasChild
v/r

(1,∞)

Hideaki Takeda / National Institute of Informatics

Text

Thing

Date PersonMail

sender
(1,1) v/r

receiver
(1,NIL)

v/r

sendDate (1,1)

message
(1,1)

v/r

v/r

Mail ⊑ Thing ⊓"sendDate.Date ⊓ "sender.Person
⊓ "receiver.Person ⊓ "message.Text

Hideaki Takeda / National Institute of Informatics

Text

Thing

Date PersonMail
v/r

v/r

v/r

v/r

Private
Mail

(1,1)

sender
(1,1)

receiver
(1,NIL)

sendDate (1,1)

message
(1,1)

Hideaki Takeda / National Institute of Informatics

Text

Thing

Date PersonMail
v/r

v/r

v/r

v/r

Business
Mail

Business
People

sender
(1,1)

receiver
(1,NIL)

sendDate (1,1)

message
(1,1)

Hideaki Takeda / National Institute of Informatics

Text

Thing

Date PersonMail
v/r

v/r

v/r

v/r

Business
Mail

Business
People

Confidential
Mail

(1,1)

sender
(1,1)

receiver
(1,NIL)

sendDate (1,1)

message
(1,1)

Hideaki Takeda / National Institute of Informatics

Elements of Description Logic
l Concepts: entities and classes

u Person
n Unary predicates in FOL

u {x | Person(x)}, lx.Person(x)
l Roles: properties and relations

u haschild
n 2-ary predicates in FOL

u {x, y | hasChild(x, y)}
l Constructors for concept expression: conjunction(⊓), union(⊔)

u Person ⊓ $hasChild.Female
u {x | Person(x) Ù $y.haschild(x, y) Ù Female(y)}

l Individuals: instances of concepts, co-reference to objects in the world
n Ex, Takeda, s1234

Hideaki Takeda / National Institute of Informatics

Constructors for concept expression

Constructors Syntax Semantics

Concept C CI Í DI

Role name R RI Í DI´ DI

Conjunction C ⊓ D CI ⋂ DI

Value restriction "R.C {x Î DI | "y.(x,y) Î RI Þ y Î CI }
Existential quantification $ R {x Î DI | $ y.(x,y) Î RI}
Negation ¬C DI CI

Top DI

Bottom ^ Æ

Disjunction C ⊔ D CI ⋃ DI

Existential restriction $ R.C {x Î DI | $ y.(x,y) Î RI Ù y Î CI }
Number restriction (⩾ n R) {x Î DI | |{y| y.(x,y) Î RI | n}
Collection of individuals {a1, a2, …} {a1I, a2I, …}

^

/

³

FL- AL*

Hideaki Takeda / National Institute of Informatics

Variety of Description Logics
l ALC is the smallest propositionally closed DL

n – Concept operators: ⋂, ⋃, ¬, ", $
n – No role operators (only atomic roles)
n – Concept axioms: ⊑, ≡
n – No role axioms

http://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/oracle-seminar-20101210.pdf

http://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/oracle-seminar-20101210.pdf

Hideaki Takeda / National Institute of Informatics

Variety of Description Logics
l S used for ALC extended with (role) transitivity axioms
l Additional letters indicate various extensions, e.g.:

n H for role hierarchy (e.g., hasDaughter ⊑ hasChild)
n R for role box (e.g., hasParent ⊓ hasBrother ⊑ hasUncle)
n O for nominals/singleton classes (e.g., {Italy})
n I for inverse roles (e.g., isChildOf ≡ hasChild-)
n N for number restrictions (e.g., ⩾2 hasChild, ⩽3 hasChild)
n Q for qualified number restrictions (e.g., ⩾ 2 hasChild.Doctor)
n F for functional number restrictions (e.g., ⩽ 1 hasMother)

l E.g., SHIQ = S + role hierarchy + inverse roles + QNRs
l SHOIN = S + role hierarchy + nominals + inverse roles + NR
l SHIF = S + role hierarchy + inverse roles + FNR

Hideaki Takeda / National Institute of Informatics

Semantics
l Interpretation I consists of the domain of discourse DI (non empty

set) and interpretation function I

n I maps
uConcept C to CI Í DI

uRole R to RI Í DI´ DI

l A model for C is an interpretation where CI is not empty
l A concept C is satisfiable if it has a model for C

Hideaki Takeda / National Institute of Informatics

TBox & ABox

l Knowledge Base S = <TBox, ABox>
l TBox

n Conceptual or terminological knowledge
n Intensional knowledge
n General knowledge
n Examples

u Woman º Person ⊓ Female
u Parent º Person ⊓ $ hasChild.Person ⊓ " hasChild.Person
u Mother º Female ⊓ Parent

l ABox
n Instance or assertional knowledge
n Extensional knowledge
n Knowledge in a situaion
n Examples

u Woman(Sazae)
u hasChild(Sazae, Tara) Mother

Person
Female

ParentWoman

hasChild
v/r

(1,∞)

Hideaki Takeda / National Institute of Informatics

Reasoning
l Subsumption

n Concept satisfiablity: S ⊭ C º ^
n Concept Subsumption: S ⊨ C ⊑ D or S ⊨ C ⊓ ¬Dº ^
n Inconsistency:
n Ex.)

uMother ⊑ Woman

Mother

Person
Female

ParentWoman

hasChild
v/r

Hideaki Takeda / National Institute of Informatics

Structural Subsumption Algorithm
l Normalization (Conjunctive normal form)

n Mother= Person ⊓ Female ⊓ "hasChild.Person
n SMother= Person ⊓($hasChild ⊓ "hasChild.Person) ⊓ Female ⊓ " hasChild.Student

= Person ⊓ Female ⊓ $ hasChild ⊓ " hasChild.(Person ⊓ Student)

l Compare each term
n C subsumes D if each term Ci Î C satisfies:

uIf Ci is atomic or $R, then there is Dj with Dj=Ci

uIf Ci is "R.C’, then there is a Dj with Dj= "R.D’ and C’
subsumes D’

l Liner complexity and sound
l Complete only for FL-

Hideaki Takeda / National Institute of Informatics

Tableau algorithms
l Check satisfiability of concept descriptions

n Assume an instance b which satisfies all the descriptions
n Then check whether this assumption turns out impossible

uThe assumption is wrong -> not satisfiable
l For NNF (Negation Nomarl Form)

n Negation appears only just before concepts
l Completion rules

n Adding constraints by interpreting terms
n Derive contradiction

Hideaki Takeda / National Institute of Informatics

Tableau algorithms
l Completion rules

n ⊓ -rule:
u Condition: S contains (C ⊓ D)(x) and does not contains both C(x) and D(x)
u Action: S’=S ⊔{C(x), D(x)}

n ⊔ -rule:
u Condition: S contains (C ⊔ D)(x) and neither C(x) nor D(x)
u Action: S’=S ⊔{C(x)} or S’=S ⊔{D(x)}

n $-rule:
u Condition: S contains ($R.C)(x) and no individual z such that satisfy C(z)

and R(x,z) in S
u Action: S’=S ⊔{C(y),R(x,y)}

n "-rule:
u Condition: S contains ("R.C)(x) and R(x,y), and does not contain C(y)
u Action: S’=S ⊔{C(y)}

Hideaki Takeda / National Institute of Informatics

Sumsumption by Tableau algorithms
l Unfold Tbox T to T’

n Remove defined concepts by applying their definition in T
uPick up B such as AºB in T
uReplace A’ such as A’ºB’ with B’ in B recursively

l Remove defined concepts by applying their definition in C ⊓¬D
uPick up A such as AºB in C ⊓¬D
uReplace A with B

l Transform C ⊑ D to C ⊓¬D
l Transform C ⊓ ¬D into NNF (Negation Normal Form)
l Check C ⊓ ¬D by Tableau algorithm

Hideaki Takeda / National Institute of Informatics

Tableau algorithms: An exmple
l Dmom ⊑ Mother ?
l T

n Woman º Person ⊓ Female
n Parent º Person ⊓ $ hasChild.Person ⊓ " hasChild.Person
n Mother º Female ⊓ Parent
n Dmom º Woman ⊓ $ hasChild.Woman ⊓ " hasChild.Woman

l T’
n Woman º Person ⊓ Female
n Parent º Person ⊓ $ hasChild.Person ⊓ " hasChild.Person
n Mother º Female ⊓ Person ⊓ $ hasChild.Person ⊓ " hasChild.Person
n Dmom º Person ⊓ Female ⊓ $ hasChild.(Person ⊓ Female) ⊓ " hasChild. (Person ⊓ Female)

l Transform C ⊑ D to C ⊓ ¬D
n Dmom ⊓ ¬Mother

l Remove defined concepts
n Person ⊓ Female ⊓ $ hasChild. (Person ⊓ Female) ⊓ " hasChild. (Person ⊓ Female) ⊓ ¬(Female

⊓ Person ⊓ $ hasChild.Person ⊓ " hasChild.Person)
l NNF

n Person ⊓ Female ⊓ $ hasChild. (Person ⊓ Female) ⊓ " hasChild. (Person ⊓ Female) ⊓ (¬Female
⊔ ¬Person ⊔ "¬hasChild.Person ⊔ $ ¬hasChild.Person)

Hideaki Takeda / National Institute of Informatics

An example

l S0={x: Person ⊓ Female ⊓ $ hasChild. (Person ⊓ Female) ⊓ " hasChild. (Person ⊓ Female) ⊓
(¬Female ⊔ ¬Person ⊔ "¬hasChild.Person ⊔ $ ¬hasChild.Person)}
n ⊔-rule
n S1=S0 ⊔ {x: ¬Female}= ^
n S1’’= S0 ⊔ {x: ¬Person}= ^
n S1’’’= S0 ⊔ {x: "¬hasChild.Person }(1)

u ⊓-rule
n S2=S1’’’ ⊔ {x: Person ⊓ Female ⊓ $ hasChild. (Person ⊓ Female), x:" hasChild. (Person ⊓

Female)}
u $-rule

n S3=S2 ⊔ {y: Person ⊓ Female, (x,y): hasChild}
u ⊓ -rule

n S4=S3 ⊔{y:Person, y:Female}
u "-rule (for (1))

n S5= S4 ⊔ {y: ¬Person}= ^
n S1’’’’= S0 ⊔ {x: $ ¬hasChild.Person }

u ….

Hideaki Takeda / National Institute of Informatics

OWL(Web Ontology Language)
l More general knowledge representation
l Based on Description Logics
l Features

n Class
u Necessary condition / necessary and sufficient condition
u Class expression:

l Constraint by property
n Like slot definition of a class
n Type constraint (all/some), cardinality, typed cardinality

l Logical operation of classes: union, intersection, negation
n Property

u Multiple ranges and domains
u Specifying meta-property

n Import of definitions

Hideaki Takeda / National Institute of Informatics

Class descriptions
l a class identifier (a URI reference)
l an exhaustive enumeration of individuals that together form the

instances of a class
l a property restriction
l the intersection of two or more class descriptions
l the union of two or more class descriptions
l the complement of a class description

Hideaki Takeda / National Institute of Informatics

OWL: Instances
l Instance

n Instance for a class or property
n rdf:type

l Equality and Inequality of Individuals
:John owl:differentFrom :Bill .
:James owl:sameAs :Jim.

:Mary rdf:type :Person .

Hideaki Takeda / National Institute of Informatics

OWL
l Class axioms

n rdfs:subClassOf
n owl:equivalentClass
n owl:intersectionOf

!"#$%&'()*+!+,-./%++0* !12$%/2'3
!4,$%&'#5/!26,78%/2&9./%++ !:2(+#&'3
!;#9<2('()*+!+,-./%++0* =
()*!9>?2 #5/!./%++ @
#5/!,&7#&0* A'!12$%/2'!:%(2&9B

Mother

Person
Female

ParentWoman

hasChild
v/r

Hideaki Takeda / National Institute of Informatics

OWL
l Object Properties

:John :hasWife :Mary .

l Data properties
n :John :hasAge 51 .

l Property hierarchy
:hasWife rdfs:subPropertyOf :hasSpouse .

l Domain and rage
:hasWife rdfs:domain :Man ;

rdfs:range :Woman .
:hasAge rdfs:domain :Person ;

rdfs:range xsd:nonNegativeInteger .

Hideaki Takeda / National Institute of Informatics

OWL
l Property restriction

n A special kind of class description. It describes an anonymous class, namely a
class of all individuals that satisfy the restriction

Hideaki Takeda / National Institute of Informatics

OWL: Value constraints
l A restriction class to either a class description or a data range
l owl:allValuesFrom

n All individuals must satisfy the specific condition (class or data range)

l owl:someValuesFrom

n At least one property value must satisfy the specific condition

l owl:hasValue

n Constrain the value as the specific individual

:HappyPerson rdf:type owl:Class ;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Happy

] .

:Parent owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom :Person

] .

:JohnsChildren owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasParent ;
owl:hasValue :John

] .

Hideaki Takeda / National Institute of Informatics

OWL: Cardinality constraints
l to allow only a specific number of values
l owl:maxQualifiedCardinality

n A restriction containing an owl:maxQualifiedCardinality constraint
describes a class of all individuals that have at most N semantically distinct
values

l owl:minQualifiedCardinality
l owl:qualifiedCardinality

:John rdf:type [
rdf:type owl:Restriction ;
owl:maxQualifiedCardinality "4"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild ;
owl:onClass :Parent

] .

Hideaki Takeda / National Institute of Informatics

OWL
l Cardinality Constraint

:Parent rdfs:quivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
ow:allValuesFrom :person ;
owl:minQualifiedCardinality ”1"^^xsd:nonNegativeInteger ;
owl:onClass :person

] .

Mother

Person
Female

ParentWoman

hasChild
v/r

Hideaki Takeda / National Institute of Informatics

OWL Families
l OWL lite

n SHIF(D) = SHIF + Datatype
l OWL DL

n SHOIN(D) = SHOIN + Datatype
l OWL Full

n OWL + RDFS
n Eg.,

uOwl:class vs rdfs:class
uOwl:ObjectTypeProperty and rdf:Property

Hideaki Takeda / National Institute of Informatics

Difference among Lite, DL, and Full
Lite DL Full

Compatibility
with RDF

Theoretically, no rdf document
can be assumed to be compatible
with OWL Lite

Theoretically,no rdf document can be
assumed to be compatible with OWL DL

All valid rdf documents are OWL full

Restrictions on
class definition

Requires separation of classes,
instances, properties, and data
values

Requires separation of classes, instances,
properties, and data values

Classes
can be instances or properties at the same time. For
example, it is perfectly legal in OWL Full to have a
“Fokker-100″ identifier which acts both as a class name
(denoting the set of Fokker-100 airplanes flying around the
world) and as an individual name (e.g., an instance of
the class AirplaneType).

RDF Mixing Restricts
mixing of rdf and owl constructs

Restricts
mixing of RDF and OWL constructs

Freely allows mixing of RDF and OWL constructs

Classes
Descriptions

The only class description
available in OWL lite is
IntersectionOf

Classes
can be described as UnionOf ,
ComplementOf, IntersectionOf, and
enumeration
Eg: class can be exhaustively defined by its
instances. For example defining a class
DaysOfWeek exhaustively by Sun, Mon,
Tue, Wed, Thurs,
Fri, Sat

Classes can be UnionOf, ComplementOf, IntersectionOf,
and enumeration Eg:
class can be exhaustively defined by its instances. For
example defining a
class DaysOfWeek exhaustively by Sun, Mon, Tue, Wed,
Thurs, Fri, Sat

Cardinality Cardinality: 0/1 MinCardinality: Cardinality>= 0 MaxCardinality >= 0

http://ragrawal.wordpress.com/2007/02/20/difference-between-owl-lite-dl-and-full/

http://ragrawal.wordpress.com/2007/02/20/difference-between-owl-lite-dl-and-full/

Hideaki Takeda / National Institute of Informatics

OWL Lite
l RDF Schema Features:

n Class (Thing, Nothing)
n rdfs:subClassOf
n rdf:Property
n rdfs:subPropertyOf
n rdfs:domain
n rdfs:range
n Individual

l (In)Equality:
n equivalentClass
n equivalentProperty
n sameAs
n differentFrom
n AllDifferent
n distinctMembers

l Property Characteristics:
n ObjectProperty
n DatatypeProperty
n inverseOf
n TransitiveProperty
n SymmetricProperty
n FunctionalProperty
n InverseFunctionalProperty

l Property Restrictions:
n Restriction
n onProperty
n allValuesFrom
n someValuesFrom

l Restricted Cardinality:
n minCardinality (only 0 or 1)
n maxCardinality (only 0 or 1)
n cardinality (only 0 or 1)

l Header Information:
n Ontology
n imports

l Class Intersection:
n IntersectionOf

l Versioning:
n versionInfo
n priorVersion
n backwardCompatibleWith
n incompatibleWith
n DeprecatedClass
n DeprecatedProperty

l Annotation Properties:
n rdfs:label
n rdfs:comment
n rdfs:seeAlso
n rdfs:isDefinedBy
n AnnotationProperty
n OntologyProperty

l Datatypes
n xsd datatypes

