Knowledge Sharing System 3. Semantic Web **3.2 Description Logic**

武田英明 Hideaki Takeda takeda@nii.ac.jp 国立情報学研究所 National Institute of Informatics

Hideaki Takeda / National Institute of Informatics

NII =

Description Logic

What is Description Logic? • Representation for structured knowledge level Concepts, relations between concepts, Semantic Networks inheritance [Quillian66] Logical formalization - nodes, association - mixture of representation levels History • - no semantics **KL-ONE** [Brachman78] Frames - concepts, roles, inheritance [Minsky81] - separation from logical/conceptual - concepts, slots, (facets) levels - object-oriented - mixture of descriptions and assertions - not good semantics **DL** formalization [Brachman&Levesque84]-- formal semantics

Hideaki Takeda / N

- tradeoff of expressiveness and computational complexity

LOOM, CLASSIC, KRIS

- various languages and implementations

Concept

 $Mail \subseteq Thing \cap \forall sendDate.Date \ \cap \forall sender.Person \ \cap \forall receiver.Persor$

NII 🗖

Elements of Description Logic

- Concepts: entities and classes
 - Person
 - Unary predicates in FOL
 - {x | Person(x)}, λx .Person(x)
- Roles: properties and relations
 - haschild
 - 2-ary predicates in FOL
 - \$ {x, y | hasChild(x, y)}
- Constructors for concept expression: $conjunction(\cap)$, $union(\cup)$
 - ◆ Person ∩ ∃hasChild.Female
 - {x | Person(x) $\land \exists y$.haschild(x, y) \land Female(y)}
- Individuals: instances of concepts, co-reference to objects in the world
 - Ex, Takeda, s1234

NII 🗖

Constructors	for	concept	t expression

$FL^{-}AL^{*}$				
Constructors	Syntax	Semantics		
Concept	С	$\mathbf{C}^{I} \subseteq \Delta^{I}$		
Role name	R	$\mathbf{R}^{I} \subseteq \Delta^{I} \times \Delta^{I}$		
Conjunction	$\mathbf{C} \cap \mathbf{D}$	$\mathbf{C}^{I} \cap \mathbf{D}^{I}$		
Value restriction	∀ R. C	$\{\mathbf{x} \in \Delta^{I} \mid \forall \mathbf{y}.(\mathbf{x},\mathbf{y}) \in \mathbf{R}^{I} \Rightarrow \mathbf{y} \in \mathbf{C}^{I} \}$		
Existential quantification	∃ R	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y}.(\mathbf{x},\mathbf{y}) \in \mathbf{R}^{I}\}$		
Negation	¬C	$\Delta^{I} \sim C^{I}$		
Тор	Т	Δ^{I}		
Bottom	L	Ø		
Disjunction	$\mathbf{C} \cup \mathbf{D}$	$\mathbf{C}^{I} \cup \mathbf{D}^{I}$		
Existential restriction	∃ R.C	$\{\mathbf{x} \in \Delta^{I} \mid \exists \mathbf{y}(\mathbf{x},\mathbf{y}) \in \mathbf{R}^{I} \land \mathbf{y} \in \mathbf{C}^{I} \}$		
Number restriction	$(\geq \mathbf{n} \mathbf{R})$	$\{\mathbf{x} \in \Delta^{I} \mid \{\mathbf{y} \mid \mathbf{y}.(\mathbf{x},\mathbf{y}) \in \mathbf{R}^{I} \geq n\}$		
Collection of individuals	$\{a_1, a_2,\}$	$\{a_1^{I}, a_2^{I},\}$		

Semantics

- Interpretation *I* consists of the domain of discourse Δ^{I} (non empty set) and interpretation function I
 - I maps
 - Concept C to $C^I \subseteq \Delta^I$
 - Role R to $R^I \subseteq \Delta^I \times \Delta^I$
- A model for C is an interpretation where C^{I} is not empty
- A concept C is satisfiable if it has a model for C

NII 🗖

TBox & ABox

- Knowledge Base $\Sigma = \langle TBox, ABox \rangle$ •
- TBox
 - Conceptual or terminological knowledge
 - Intensional knowledge
 - General knowledge
 - Examples
 - Woman = Person \cap Female
 - Parent = Person $\cap \exists$ hasChild.Person $\cap \forall$ hasChild.Person
 - Mother = Female \cap Parent

Reasoning

- Subsumption
 - Concept satisfiablity: $\Sigma \neq C \equiv \bot$
 - Concept Subsumption: $\Sigma \models C \subseteq D$ or $\Sigma \models C \cap \neg D \equiv \bot$
 - Inconsistency:
 - **Ex.**)
 - Mother \subset Woman

Structural Subsumption Algorithm

- Normalization (Conjunctive normal form)
 - Mother= Person \cap Female \cap \forall hasChild.Person
 - SMother= Person \cap (\exists hasChild \cap \forall hasChild.Person) \cap Female \cap \forall hasChild.Student = Female \cap \exists hasChild \cap \forall hasChild.(Person \cap Student)
- Compare each term
 - C subsumes D if each term $C_i \in C$ satisfies:
 - If C_i is atomic or $\exists R$, then there is D_i with $D_i = C_i$
 - If C_i is $\forall R.C'$, then there is a D_j with $D_j = \forall R.D'$ and C' subsumes D'
- Liner complexity and sound
- Complete only for *FL*⁻

Hideaki Takeda / National Institute of Informatics

NII –

Tableau algorithms

- Check satisfiability of concept descriptions
 - Assume an instance **b** which satisfies all the descriptions
 - Then check whether this assumption turns out impossible
 - The assumption is wrong -> not satisfiable
- For NNF (Negation Nomarl Form)
 - Negation appears only just before concepts
- Completion rules
 - Adding constraints by interpreting terms
 - Derive contradiction

NII 🗖

Tableau algorithms

- Completion rules
 - \frown -rule:
 - Condition: S contains $(C \cap D)(x)$ and does not contains both C(x) and D(x)
 - Action: $S'=S \cup \{C(x), D(x)\}$
 - \cup -rule:
 - Condition: S contains $(C \cup D)(x)$ and neither C(x) nor D(x)
 - Action: S'=S \cup {C(x)} or S'=S \cup {D(x)}
 - ∃-rule:
 - Condition: S contains (∃R.C)(x) and no individual z such that satisfy C(z) and R(x,z) in S
 - Action: $S'=S \cup \{C(y), R(x,y)\}$
 - ► ∀-rule:
 - Condition: S contains $(\forall R.C)(x)$ and R(x,y), and does not contain C(y)
 - Action: $S'=S \cup \{C(y)\}$

Hideaki Takeda / National Institute of Informatics

Sumsumption by Tableau algorithms

- Unfold Tbox *T* to *T*'
 - Remove defined concepts by applying their definition in T
 - Pick up B such as $A \equiv B$ in T
 - Replace A' such as $A' \equiv B'$ with B' in B recursively
- Remove defined concepts by applying their definition in $C \cap D$
 - Pick up A such as A=B in $C \cap \neg D$
 - Replace A with B
- Transform $C \subseteq D$ to $C \cap \neg D$
- Transform $C \cap \neg D$ into NNF
- Check C $\cap \neg D$ by Tableau algorithm

Tableau algorithms: An exmple

- Dmom \subseteq Mother ?
- T
 - Woman = Person \cap Female
 - Parent = Person $\cap \exists$ hasChild.Person $\cap \forall$ hasChild.Person
 - Mother = Female \cap Parent
 - Dmom = Woman $\cap \exists$ hasChild.Woman $\cap \forall$ hasChild.Woman
- T'
 - Woman = Person \cap Female
 - Parent = Person $\cap \exists$ hasChild.Person $\cap \forall$ hasChild.Person
 - Mother = Female \cap Person $\cap \exists$ hasChild.Person $\cap \forall$ hasChild.Person
 - Drom = Person \cap Female $\cap \exists$ has Child.(Person \cap Female) $\cap \forall$ has Child. (Person \cap Female)
- Transform $C \subseteq D$ to $C \cap \neg D$
 - Dmom $\cap \neg$ Mother
- Remove defined concepts
 - Person ∩ Female ∩ ∃ hasChild. (Person ∩ Female) ∩ ∀ hasChild. (Person ∩ Female) ∩ ¬(Female ∩ Person ∩ ∃ hasChild.Person ∩ ∀ hasChild.Person)
- NNF
 - Person ∩ Female ∩ ∃ hasChild. (Person ∩ Female) ∩ ∀ hasChild. (Person ∩ Female) ∩ (¬Female ∪ ¬Person ∪ ∀¬hasChild.Person ∪ ∃ ¬hasChild.Person)

Hideaki Takeda / National Institute of Informatics

```
NII 🗖
```

NII 🗖

An example

- S0={x: Person ∩ Female ∩ ∃ hasChild. (Person ∩ Female) ∩ ∀ hasChild. (Person ∩ Female) ∩ (¬Female ∪ ¬Person ∪ ∀¬hasChild.Person ∪ ∃ ¬hasChild.Person)}
 - \bigcirc -rule
 - S1=S0 \cup {x: \neg Female}= \bot
 - S1''= S0 \cup {x: \neg Person}= \bot
 - S1'''= S0 \cup {x: \forall -hasChild.Person }₍₁₎
 - S2=S1["] ∪ {x: Person ∩ Female ∩ ∃ hasChild. (Person ∩ Female), x:∀ hasChild. (Person ∩ Female)}

◆ ∃-rule

- S3=S2 \cup {y: Person \cap Female, (x,y): hasChild}
 - \cap -rule
- S4=S3∪{y:Person, y:Female}
 - ◆ ∀-rule (for (1))
- S5= S4 \cup {y: ¬Person}= \bot
- $S1^{**} = S0 \cup \{x: \exists \neg hasChild.Person\}$
 -

 $Mail \subseteq Thing \cap \forall sendDate.Date \ \cap \forall sender.Person \ \cap \forall receiver.Persor$

Hideaki Takeda / National Institute of Informatics

NII =