Learning of the Way of Abstraction in Real Robots

Atsushi Ueno*, Hideaki Takeda* & Toyoaki Nishida* **

*Graduate School of Information Science, Nara Institute of Science and Technology,

Ikoma, Nara 630-0101, Japan

{ueno, takeda, nishida}@is.aist-nara.ac.jp

**School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan

nishida@kc.t.u-tokyo.ac.jp

ABSTRACT

Real robots should be able to adapt flexibly to various
environments. The main problem is how to abstract
useful information from a huge amount of information
in the environment. This is called the frame problem.
This paper proposes a new architecture which can learn
how to perform abstraction while executing the task.
We call the architecture Situation Transition Network
System (STNS). By this architecture, a robot can ac-
quire a necessary and sufficient symbol system for the
current task and environment. Furthermore, this sym-
bol system is flexible enough to adapt to changes of
the environment. STNS performs cognitive learning
and behavior learning parallelly while executing the
task. In cognitive learning, it extracts situations and
maintains them dynamically in the continuous state
space on the basis of rewards from the environment. A
situation can be regarded as an empirically obtained
symbol. In behavior learning, it constructs an MDP
(Markov Decision Problem) model of the environment
on the abstracted situation representation. This model
is used for planning of behavior. The validity of STNS
is shown in computer simulations.

1 INTRODUCTION

Real robots should be able to adapt flexibly to various
environments. However, most existing robots cannot
adapt. The main reason is that they have fixed symbol
systems. A human-made symbol system is not always
suitable for the robot. Therefore, in the environments
which the designers cannot expect, such a robot is apt
to fail to manage a huge amount of information and
get into the frame problem. In this paper, the frame
problem is defined as “the problem of how to deal with
partiality of information” [3].

The frame problem cannot be solved intrinsically
because no agent can have all information in the world.
However, animals seem not to be troubled with the
frame problem in the daily life. It can be considered
as a practical solution of the frame problem. We think
that “obtaining appropriate information frames empir-
ically” is a key function for this solution. This function
can be regarded as cognitive learning or learning how
to perform abstraction. It is expected that an agent
with this function can obtain a necessary and suffi-
cient symbol system for the current environment. By

incorporating this with behavior learning on the sym-
bolic system, an agent can have flexibility necessary for
adapting to unfamiliar environments. Although this
parallel learning has demerits in inefliciency and com-
plexity of information processing, we think that it is
essential to the practical solution of the frame prob-
lem.

Such cognitive agents are realized only in the do-
main of reinforcement learning. In the agent, rein-
forcement learning of behavior policy is executed in the
symbol space, and learning of the state representation
is executed in the continuous input space. The latter is
a kind of cognitive learning. Since the task of the agent
is expressed all in the rewards from the environment
in the general reinforcement learning problem, rewards
can be used reasonably as the basis of articulation. In
this point of view, reinforcement learning is suitable
for cooperating with cognitive learning.

The following two properties are important for the
cognitive learning to solve the frame problem practi-
cally. First, articulation should be based on rewards.
By this property, highly abstracted state representa-
tion can be expected because the task is represented
in rewards. Second, cognitive learning and behavior
learning should be executed parallelly while executing
the task. In this case, good state recognition can make
good behavior, and good behavior can maintain well-
shaped states. This on-line learning contributes to the
following three advantages:

1. The system can adapt to changes of the environ-
ment.

2. The system can make a state representation from
a few data since it can be adjusted afterward.

3. The robot can learn the area frequently where it
goes frequently in task execution.

Advantage 1 means the flexibility of the symbol sys-
tem. By this advantage, the robot need not wonder
when it should start cognitive learning or how long it
must continue learning. By advantage 2 and 3, it can
be expected that learning converges immediately.

2 STNS

We have developed a new architecture which has the
above two properties. We call the architecture Situ-
ation Transition Network System (STNS). This is a

solution to the problem of how to adapt to various en-
vironments. By this architecture, a robot can acquire a
necessary and sufficient symbol system for the current
task and environment.

As shown in Fig. 1, STNS consists of a situation
classifier, a situation transition network (STN), and
several behavior modules. In each behavior step, the
system identifies the current “situation” where the cur-
rent input is included, makes a plan on the STN, and
activates a behavior module according to the plan.
And a list of the input, the corresponding situation,
the selected behavior, and the acquired reward are put
into a history database. It keeps the data for a fixed
period, and always has fixed numbers of data. Cogni-
tive learning and behavior learning are performed on
the data in it.

-
"

\’
Cognitive

emvironment

P Situation Transition Network Behavior
Situation

. Modules
Classifier

Figure 1: The structure of STNS

In cognitive learning, it extracts situations and
maintains them dynamically in the continuous state
space on the basis of rewards. A situation is defined
as a set of input vectors from which the robot receives
the same reward by the same behavior. It is a highly
abstracted state and can be regarded as a empirically
obtained symbol. In this way, the system can learn the
appropriate way of abstraction from a huge amount of
information of the real environment.

In behavior learning, it stores results of transitions
between situations and constructs an MDP (Markov
Decision Problem) model of the environment on the
learned situation representation. This model is used
for planning of behavior. The goal of the planning is
to maximize discounted sum of rewards received over a
period of time. Because the planning is performed on
the abstracted situation representation, the robot with
STNS does not have to deliberate details in planning.
This process can be regarded as a kind of reinforcement
learning of behavior policy.

The previous version of STNS [7] uses Inter-
leave Planning-based Reinforcement Learning (IPRL)
method for planning on the STN. Hereinafter, we
call it STNS1. In this paper, we propose an im-
proved version, STNS2, which uses the policy iteration
method for planning on the STN. The policy iteration
is one of generally used dynamic programming meth-
ods, and it is often the most efficient approach for small
state spaces. The other modules in STNS2, that is a

situation classifier, behavior modules, and a history
database, are just the same as STNS1 because of the
modularity of this architecture.

Cognitive learning and behavior learning are per-
formed parallelly while executing the task. Therefore,
the above-mentioned three advantages are realized.

In the next two sections, we explain the cognitive
learning and the behavior learning in more detail.

3 COGNITIVE LEARNING IN STNS

In this section, we explain a new cognitive learning
method which is used in STNS1 and STNS2 in com-
mon.

3.1 Segmentation Based on Similarity of Re-
wards
STNS segments the state space into some situations
each of which has a specific meaning on the basis of
similarity of rewards. The meaning of a situation is
“the system can acquire the specific result by the spe-
cific behavior”. The specific behavior is called the con-
dition behavior of the situation. The specific results
are divided into two types, i.e., R-situation and T-
situation. In a situation based on immediate rewards
called R-Situation, the result is to acquire a specific
big reward. In a situation based on situation transi-
tions called T-Situation, the result is to transit to a
specific situation. If every chain of T-Situations is an-
chored to an R-Situation, every situation is guaranteed
to lead to a specific big reward by the same sequence
of behaviors.

3.2 Bitten Hyper-Ellipsoid Representation

In on-line learning, the system should be able to de-
cide rough shapes of situations from a limited amount
of data, and to decide finer shapes as data increase.
For this purpose, we propose the bitten hyper-ellipsoid
representation. In this representation, each situation
is shaped by the positive instances and the negative in-
stances that are decided based on the meaning of the
situation.

As shown in Fig. 2, this representation is a mixture
of macroscopic cognition and microscopic cognition. In
macroscopic cognition, the boundary of a situation is
a contour of Mahalanobis’ distance from the popula-
tion of the positive instances. This boundary forms
a hyper-ellipsoid® . This cognition is quick and rough
that can be formed even from very few data. Micro-
scopic cognition is realized by the Nearest Neighbor
methods? and grows finer as data increase. By mix-
ing these two types of cognition, a fine and flexible
cognition is realized.

3.3 Cognitive Learning in STNS
In STNS, the state space is divided into overlapped bit-
ten hyper-ellipsoids (situation 1-7) and a margin space

1 [1] uses the same type of representation.

2 [6] uses the same type of representation.

\ "0
e o \ \ o
& 000 / N X/ 000 \.

?" 0050 5% / /00,0 5 B
T O O 5 [g O O ot
\ - 2N 1
0 S 0 ,%<]
b3 X A

b. Microscopic cognition
(Nearest Neighbor methods)
+fine cognition

a. Macroscopic cognition
(Contour of Mahalanobis’ distance,
Hyper-ellipsoid)
*quick cognition e N
erough cognition which make y O 00) O positive instances:
up for the lack of data J instances that it the meaning of the situation
v among all instances in the state space
X
o 09 §o
A o O~ X negative instances:
RN ~ instances that do not fit the meaning of the situation
X among all instances which belong to the situation

Cognition on the bitten hyper-ellipsoid representation

Figure 2: The bitten hyper-ellipsoid representation

(situation 0) as shown in Fig. 3. A new perceptual in-
put is ascertained whether it belongs to each situation
from the top of the discrimination tree in Fig. 3.

Discrimination tree
(0-7 denote situations)

State space (a case of 2-D input)

Figure 3: The state space and the discrimination tree

Cognitive learning is realized by extraction and
maintenance of situations. There are two conditions
for situation extraction.

1. R-Situation In the whole state space, there are
enough (more than NF%.) data in which the
system acquired a specific reward larger than

a threshold (7 by a specific behavior.

T-Situation In situation 0, there are enough
(more than NZ) data in which the system
transited to a specific situation other than sit-
uation 0 by a specific behavior and did not

acquire a large (more than 72,) reward.

mzn)

2. There is no situation yet which has the specific be-
havior and the specific result in condition 1 as its
meaning.

When both of these conditions are fulfilled, a new
situation is extracted. In extraction, the meaning of
the new situation is defined referring to the condition 1,
and positive instances are collected from the history
database.

The extracted situations are maintained by these
five methods.

e Replacement of instances in the population of the
positive instances and the population of the nega-
tive instances of each situation

¢ Adjustment of the boundary of each hyper-ellipsoid
(The boundary is settled just on the farthest posi-
tive instance.)

e Adjustment of the order of situations in the dis-
crimination tree (The nearer situation to rewards

is put upper.)
e Changing the meaning of deformed situations

o Elimination of deformed situations

4 BEHAVIOR LEARNING IN STNS2

In STNS, each situation has a condition behavior.
However, it decides a behavior policy by reinforcement
learning. The main reason is that the cognitive learn-
ing in STNS is on-line learning: it extracts a situation
from a few data and it is assumed that the environ-
ment can be changed, therefore the initial condition
behavior is not always the optimal behavior.

Behavior learning is realized by combination of
learning of the STN and behavior planning on it.
There is no difference in components of STN between
STNS1 and STNS2. The only difference is the planning
method: STNS1 uses IPRL and STNS2 uses the policy
iteration method. In this section, we explain the STN
first, and then explain a planning method with policy
iteration.

4.1 STN

An STN is an MDP model which consists of the transi-
tion probabilities between situations and the expecta-
tions of immediate rewards accompanying transitions.
The transition probability from situation ¢ to situa-
tion j by behavior b is called p(3, j; b), and the expec-
tation of the immediate reward which are acquired by
the transition is called 7(3, j; b).

If Marcov property is assumed, the problem of find-
ing the optimal policy on an STN is a Markov deci-
sion problem. Accordingly, the optimal policy is de-
termined by solving the optimal equation of dynamic
programming:

_maxz 4,75 0){r(2,5;0) + 7U(4)} (1)

JEX

where X is the state space, B is the behavior space,
i (¢ € X) is a situation, and v (0 < v < 1) is a dis-
counting factor. U(¢) is the utility of situation 7, which
is the expectation of the discounted sum of the rewards
received over time by the optimal policy.

In STNS, the MDP model cannot be given in ad-
vance since the situation representation is changed dy-
namically. Therefore, the model are estimated by the
maximum likelihood estimation from the data in the
history database at the same time as the learning of
a behavior policy. This problem is in the domain of
reinforcement learning.

4.2 Planning with Policy Iteration

Many reinforcement learning methods keep the esti-
mated utilities of situations, and improve them little
by little after every behavior to convergent to the op-
timal values. However, STNS does not keep them but
calculate them as the need arises in order to adapt to
the changes of situation representation immediately.

STNS2 uses the policy iteration method for calcu-
lating the utilities of situations. This method works
by picking a policy, then calculating the utility of each
situation. Given a fixed policy, a set of optimal equa-
tions (Equation 1) are simultaneous linear equations
and can be solved directly by linear algebra methods
such as Gaussian elimination to find the utilities of sit-
uations. It then updates the policy at each situation to
maximize its utility using the utilities of the successor
situations, and repeats until the policy stabilizes.

By this method, optimal behaviors in all situa-
tions are determined. It is expected that a simple
hill-climbing method which picks the optimal behav-
ior reactively in each situation leads the robot to a big
reward. However, STNS2 makes a plan before activate
a behavior module. A plan P in STNS is a list of pairs
of a behavior and a target situation of the behavior:

P = ((bla d1)> (b2ad2)v sy (bn’ dn))

where n is the length of the plan, b; is the sth behav-
lor in the plan, and d; is the target situation of the
behavior. The target situation can be used as a stop-
ping condition of a continuous behavior. As shown
in Fig. 3, the situations made by STNS has rugged
shapes. Therefore, this sort of stopping condition is
useful in order not to be caught in a projection of an
undesirable situation.
The procedures for planning are as follows:

1. Find the utilities of all situations by the policy it-
eration method.

2. Develop a plan forward from the current situation.
Set the optimal behavior of the situation as the
behavior b;, and the most promising destination as
the target situation d;:

d; = arg Ijne%}((p(di—l,j; bi){r(di—1,7;b:) + YU (5)}

3. Continue plan developing until the peak of the util-
ity or a terminal situation which has no successor
situations.

Then, the system starts to execute the plan in the en-
vironment. Plan execution is stopped and planning is
started again after the last behavior in the plan is ex-
ecuted, or another situation than the target situation
is reached.

5 EXPERIMENTS

We conducted three types of experiments on computer
simulation in order to examine the validity of STNS2.
The results of the same sorts of experiments of STNS1
are shown in [7].

5.1 Experiment 1: Navigation on 2-D Input

To show the validity of STNS2, we show a simple ex-
periment on computer simulation. Fig. 4 shows the
navigation problem on 2-dimensional input. FEvery
trial starts after the goal is settled at an arbitrary po-
sition and the rover is set at an arbitrary position out-
side of the goal in an arbitrary direction. The trial ends
when the rover arrives at the goal, and the next trial
starts immediately. At the beginning of learning, there
are only the goal situation and situation 0 (the margin
space) in the state space. We set parameters as fol-
lows: Ni};it = 3,N5;Z-t = 15,7‘£m = 5.0,y = 0.7. Note
that the number of positive instances for R-Situation
extraction, N, = 3, is the minimum in order to con-
struct an ellipsoid in the 2-dimensional state space. We

repeated this experiment 20 times.

Task:
To navigate a 16x12 rectangle rover from an arbitrary position to the only goal (a small circle whose radius is 5) in
a 100x100 square continuous plane.
The goal is settled at an arbitrary position in the 72x72 square area at the center of the room.
There is no obstacle but the wall around the room.
Perceptual Input (2-dimensinal):
The real-valued (x, y) coordinates of the goal on the coordinate system fixed to the rover (the goal sensor).

Rewards:

1. Arrival at the goal: +10

2. Collision with the wall: -1 goal

3. Trying to rotate over 90 degrees: -1 (X y)
]

(The rover can look any direction by at most 90 degrees rotation
because of the symmetry of the behaviors.)

Behaviors:

forward , backward , clockwise rotation,

counterclockwise rotation.

(The rover is assumed to be able to make collision-free rotation.)

Stopping Conditions of Behaviors:

r;:l‘ ’
rover

Figure 4: The navigation problem on 2-D input

1. Getting some reward.
2. Arrival at the target situation in the master plan.

Learning has converged after about 1300 behaviors
are executed on average. Fig. 5 shows a typical state
space after leaning has converged and the optimum
state space. The small circle at the center of each space
denotes states in which the rover arrives at the goal.
As shown in this figure, good situation representation
and good behavior policy were acquired.

\4 \4

X

condition behaviors

<«— forward move

—> backward move

~ clockwise rotation

—a counterclockwise rotation

a. State space after convergence b. Optimum state space

Figure 5: A state space after convergence and the op-
timum state space

5.2 Experiment 2: Flexibility Test

To test the flexibility of STNS2, we conducted two ex-
periments on computer simulation. One is a flexibility
test to sensor trouble and the other is a flexibility test
to actuator trouble. In both experiments, we picked
10 systems after 5000 behavior steps in Experiment 1,
changed the environment, and then let them continue
learning in the new environment. As changes of envi-
ronment, we rotated the direction of the goal sensor
(10, 15, 20, 25, 90, and 180 degrees rotation) in the

former test, and made the revolution rate of the left
wheel lower (5%, 10%, and 15% lower speed) in the
latter test. Fig. 6 shows a typical result in the case
of 15 degrees rotation of the goal sensor and a typical
result in the case of 15% lower speed of the left wheel.
As shown in this figure, passably good situation rep-
resentation and good behavior policy were acquired.

¥ v
Py X

State space after convergence

Optimum state space State space after convergence Optimum state space
a. Sensor Trouble (15° rotation of the goal sensor) b. Actuator Trouble (15% lower speed of the left wheel)

Figure 6: Results of the flexibility test

In both experiments, STNS2 can flexibly adapt
to small changes while keeping the high performance
by transforming the shapes of situations, and it can
stably adapt to big changes by eliminating deformed
and obstructive situations and starting again from the
blank state space. These two types of adaptation are
switched to each other autonomously. Even in the case
of big changes, learning converged to the same perfor-
mance after a delay of at most 1000 behavior steps
compared with learning from the blank state space.
So it can be said that learning of STNS2 is stable.

5.3 Experiment 3: Navigation on 8-D Input
The last experiment is a navigation problem on 8-
dimensional input. The setting is almost the same
with Experiment 1. But one obstacle was settled in
the room and the goal was fixed to the position shown
in Fig. 7a. And the rover got a 6-dimensional ob-
stacle sensor shown in Fig. 7b in addition to the 2-
dimensional goal sensor. We set parameters as fol-
lows: NE., =9, NI, =20,7% =50,v=0.7. Note
that the number of positive instances for R-Situation
extraction, NE, = 9, is the minimum in order to
construct a hyper-ellipsoid in the 8-dimensional state
space. This problem is difficult because the dimension
of the state space is high and the paths through the
state space is not continuous. We repeated this exper-
iment 10 times.

goal 2

Oy

v

X

rover

b. 6-dimensional obstacle

a. Work space Sensors

Figure 7: The navigation problem on 8-D input

Fig. 8 shows a typical segmentation after enough

leaning (29000 behavior steps) and the optimum seg-
mentation. The 8-D state space was mapped onto the
2-D work space by fixing the attitude of the rover. As
shown in this figure, not bad situation classification
and not bad behavior policy was obtained in the areas
near to big rewards. However, in the areas far from
big rewards, no useful situation was extracted. The
main reason is that the ability for cognitive learning is
not sufficient. For compensating for this weak point, I
think hierarchical learning or empirical creation of new
axes of the state space is effective.

5.4 Comparison between STNS1 and STNS2

When comparing STNS2 with STNS1, they have simi-
lar performance on learning: similar convergence rates,
similar performance after convergence, similar flexibil-
ity to changes of environment, and so on. As an exam-
ple, Fig. 9 shows the changes of the average numbers

of behaviors to the goal in Experiment 1 comparing
STNS1 and STNS2.

\

—+—STNSI
—=—STNS2

of Behaviors to the Goal

=)
S
S
Q

l ¢
Behavior Steps

Figure 9: Learning Curves of STNS1 and STNS2

~500
~1000
~1500
~2500
~3000

On the other hand, the elapsed time for the sim-
ulation of STNS2 was much shorter than STNSI.
Fig.10 shows the changes of the average elapsed times
of 1000 behaviors in Experiment 1 on an SGI Indy
R5000SC workstation comparing STNS1 and STNS2.
The elapsed time of STNS2 was about from 2.5 times
to 5 times as short as STNS1, and furthermore, con-
verged much earlier than STNS1. The reason for this
is that the planning time of STNS2 is much shorter
than STNS1. Although it is necessary to conduct still
more experiments for general comparative conclusion,
STNS2 seems to be more efficient than STNSI1.

120 F e
//»———o———v—”"
~ L
=100 /,»"’ ——STNSI
Q - —=—STNS2
E 80 /,,f
E_‘
g 60 e
2 v
< 40 ¢
m
ol /\R

o

~2000
~4000
~6000
~8000
~10000

Behavior Steps

Figure 10: Elapsed Time of STNS1 and STNS2

attitude
AX

»

Y

condition behaviors

f forward backward
move move

clockwise counterclockwise
rotation rotation

a. Segmentation after enough learning

b. Optimum segmentation

Figure 8: A segmentation after enough learning and the optimum segmentation

6 RELATED WORKS

There are many systems that can learn the state rep-
resentation for reinforcement learning. Some of them
are based on the similarly of rewards. Chapman and
Kaelbling [2] proposed the G algorithm that splits the
state space statistically on the basis of rewards. Ma-
hadevan and Connell [5] proposed an algorithm that
extracts clusters of states in the state space statisti-
cally on the basis of rewards. Both methods deal with
states each of which consists of a bit sequence. There-
fore, their systems are different from STNS that deals
with a problem with a continuous state space. Asada
et al. [1] proposed a method that divides a continuous
state space by hyper-ellipsoids. The method executes
cognitive learning in a off-line way: the system first
learns the whole state representation on the basis of ex-
periences of random behaviors and then shifts to task
execution. Ishiguro et al. [4] proposed a method that
first divides a continuous state space by hyper-planes
on the basis of experiences of random (or given) behav-
iors, and then learns a behavior policy by Q-learning.
It can execute these two types of learning alternately.
But it constructs fixed boundaries between states. It is
different from STNS at this point because STNS con-
structs a flexible situation representation. Takahashi
et al. [6] proposed a method that segments a continu-
ous state space by the Nearest Neighbor methods while
executing the task. The segmentation of the method
is based on rewards in the areas near to rewards and
based on the relationship between the sensory input
and its gradient in the areas far from rewards. By the
latter policy, the method can segment the state space
stably even in the areas far from rewards. However,
the validity of this policy needs to be confirmed.

7 CONCLUSION

We have proposed STNS2, a method for performing
both cognitive learning and behavior learning simul-
taneously with task execution, and shown that the
method is effective to acquire good state representation
and good behavior policy in continuous state space.

The representation also have flexibility to changes of
the environment. Furthermore, we have shown STNS2
is superior to the previous version, STNS1, in efficiency
of planning.

There needs more work for the symbol processing
system grounded on real environments. Reinforcement
learning system can deal with symbols only for repre-
senting states or behaviors. Therefore, the dual learn-
ing system like STNS can execute only very simple
symbol processing. In order to expand this sort of
symbol system, the following four functions are worth
considering: structuring symbols, symbolizing objects,
reusing symbols, and sharing symbols.

In order to confirm the validity of STNS2, it is nec-
essary to conduct experiments on real robots. We are
now preparing to put it on a real robot.

REFERENCES

[1] M. Asada, S. Noda, and K. Hosoda. Action-based
sensor space categorization for robot learning. In Proc.
of IROS 96, Vol. 3, pp. 1502-1509, 1996.

[2] D. Chapman and L. P. Kaelbling. Input generalization
in delayed reinforcement learning: An algorithm and
performance comparisons. In Proc. of I[JCAI-91, pp.
726-731, 1991.

[3] K. Hasida and H. Matsubara. Partiality of information
and the structure of the frame problem. In Proc. of
PRICAI 90, pp. 7T11-716, 1990.

[4] H. Ishiguro, R. Sato, and T. Ishida. Robot oriented
state space construction. In Proc. of IROS 96, Vol. 3,
pp. 1496-1501, 1996.

[5] S. Mahadevan and J. Connell. Automatic program-
ming of behavior-based robots using reinforcement
learning. In Proc. of AAAI-’91, pp. 768-773, 1991.

[6] Y. Takahashi, M. Asada, and K. Hosoda. Reasonable
performance in less learning time by real robot based
on incremental state space segmentation. In Proc. of
IROS 96, Vol. 3, pp. 15181524, 1996.

[7] A. Ueno, H. Takeda, and T. Nishida. Cooperation of

Cognitive Learning and Behavior Learning. To Appear
in Proc. of IROS 99, Oct. 1999

