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Abstract

Reinforcement learning is very useful for robots with
little a priori knowledge in acquiring appropriate behav-
wor. Autonomous segmentation of the continuous state
space is a promising method for reinforcement learn-
g in real robots. This is a kind of cognitive learning.
We think cognitive learning should be based on similar-
ity of rewards since the task of the robot is expressed
mn the rewards in the general reinforcement learning
problem. Furthermore, cognitive learning should be per-
formed wn an on-line way for flexibility to changes of
the environment and immediate convergence of leaning.
This paper describes a learning system which can learn
a state representation and a behavior policy simulta-
neously while executing the task. We call the system
Situation Transition Network System (STNS). As cog-
nitive learning, it extracts “situations” and maintains
them dynamically in the continuous state space on the
basis of rewards from the environment. As behavior
learning, it makes an MDP model of environment and
performs partial planning on the model. This is a kind
of reinforcement learning. The results of computer sim-
ulations are given.

1 Introduction

Reinforcement learning is very useful for robots with
little a priori knowledge in acquiring appropriate be-
havior. The general reinforcement learning can be re-
garded as learning of a behavior policy that maximizes
discounted sum of the rewards received over time. For
this purpose, many reinforcement learning methods
perform the approximation of the utility function (or
the action-value function).

In real world, almost all robots have real-valued sen-
sors and the continuous state space (perceptual input
space). There are two approaches for approximating
the utility function in the continuous state space: us-
ing an implicit representation of the function such as
neural network or segmenting the continuous space into
discrete states in which the value of the utility function
is regarded as invariable.

As the former, several kinds of implicit representa-
tions can be used such as Perceptron-like neural net-
work [2, 7, 10, 5, 6], CMAC (Cerebellar Model Arith-
metic Computer) [8], and RBF (Radial Basis Function)
[3]. But this approach has three problems: 1. it is dif-
ficult to understanding the inner representation, there-
fore, 2. it is very difficult to analyze the convergence
and the optimality of learning, therefore, 3. the human
designer must fix many parameters arbitrarily on the
basis of his own experience. It is difficult for him when
the task of the robot 1s complex.

As the latter, the most usual representation is the
grid representation which the human designer must
make by dividing the continuous space at equal or ar-
bitrary intervals. It is also difficult for him in case of a
complex task.

In order to cope with this difficulty, many methods
have been proposed which can segment the state space
autonomously. This segmentation can be regarded as a
kind of cognitive learning. In this kind of learning, we
think segmentation should be based on rewards. The
main reason is that the task of the robot is expressed
in the rewards in the general reinforcement learning
problem. Furthermore, we think input vectors which
are similar from the view point of rewards should be
got together into the same state for a highly abstracted
state representation.

Asada et al. [1] proposed a method that divides
a continuous state space by hyper-ellipsoids. In this
method, a state is defined as a set of input vectors from
which the robot achieves the goal or already acquired
state by a variable sequence of one kind action primi-
tive. By this definition, it can make a highly abstracted
state representation. However, it performs cognitive
learning in an off-line way: the system learns a state on
the basis of experiences of random behaviors in learning
phase, and executes the given task on the fixed state
representation. For this reason, it needs a sufficient of
randam behaviors to extract a new state exactly and
cannot adapt to changes of the environment.

Ishiguro et al. [4] proposed a method that first di-
vides a continuous state space by hyper-planes on the



basis of experiences of random (or given) behaviors,
and then learns a behavior policy by Q-learning. It
can perform these two types of learning alternately.
However, it constructs fixed boundaries between states.
Therefore, the states are short of flexibility.

Takahashi et al. [9] proposed a method that seg-
ments a continuous state space by the Nearest Neigh-
bor methods while executing the task. This segmenta-
tion is based on rewards in the areas near to rewards
and based on the relationship between the sensory in-
put and its gradient in the areas far from rewards. By
the latter policy, 1t can segment the state space stably
even in the areas far from rewards. But the validity of
this policy needs to be confirmed.

This paper propose a learning system which can
learn a state representation (cognitive learning) and
a behavior policy (behavior learning) simultaneously
while executing the task. We call the system Situ-
ation Transition Network System (STNS). The cog-
nitive learning is based only on similarity of rewards
in the similar way as Asadas’ method: a state is de-
fined as a set of input vectors from which the robot
acquires the same reward by the same behavior. And
we developed a new flexible situation representation.
Therefore, our system can extract highly abstracted
states. We call this highly abstracted state situation.
The behavior learning is performed by a reinforcement
learning method. In simultaneous learning of this two
types of learning, good situation recognition can make
a good behavior policy, and a good behavior policy can
maintain well-shaped situations. This on-line learning
contributes to the followings:

1. The system can adapt to changes of the environ-
ment.

2. The system can extract a situation from a few data
since 1t can adjust its shape afterward.

3. The robot can learn the area frequently where it
go frequently in task execution.

4. The robot need not wonder how long it must con-
tinue learning in learning phase.

By 2 and 3, learning converges immediately. And in
compensation for the cost of maintaining situations,
it can be expected that specialization to the task and
flexibility to changes are realized together by interde-
pendence between situations and behaviors.

2 Situation Transition Network System

As shown in Fig. 1, STNS consists of a situation clas-
sifier, a situation transition network (STN), and several
behavior modules. In each behavior step, the system

identifies the current situation where the current input
is included, makes a partial plan on the STN, and ac-
tivates a behavior module according to the plan. And
a list of the input, the corresponding situation, the se-
lected behavior, and the acquired reward are put into
a history database. It keeps the data for a fixed pe-
riod, and always has fixed numbers of data. Cognitive
learning and behavior learning are performed on the
data in it.

Behavior
Learning

emvironment
emvironment

Situation Transition Network Behavior

Situation Modules

Classifier

Figure 1: The structure of STNS

In cognitive learning, the system extracts situations
and maintains them on the basis of rewards from the
environment. This is regarded as learning of situation
representation. In behavior learning, the system learns
the Markov Decision Problem (MDP) model of the en-
vironment on the learned situation representation. The
next behavior is decided by the partial planning on the
model. This process is regarded as a kind of reinforce-
ment learning of behavior policy. These two learning
processes are performed simultaneously while execut-
ing the task.

In the next two sections, we explain the cognitive
learning and the behavior learning in more detail.

3 Cognitive Learning in STNS
3.1 Segmentation Based on Similarity of
Rewards

STNS segments the state space into some situations
each of which has a specific meaning on the basis of sim-
ilarity of rewards. The meaning of a situation is “the
system can acquire the specific result by the specific be-
havior”. The specific behavior is called the condition
behavior of the situation. The specific results are di-
vided into two types, i.e.; R-situation and T-situation.
In a situation based on immediate rewards called R-
Situation, the result is to acquire a specific big reward.
In a situation based on situation transitions called T-
Situation, the result is to transit to a specific situa-
tion. If every chain of T-Situations is anchored to an
R-Situation, every situation is guaranteed to lead to a
specific reward by the same sequence of behaviors.



3.2 Bitten Hyper-Ellipsoid Representa-
tion

In on-line learning, the system should be able to de-
cide rough shapes of situations from a limited amount
of data, and to decide finer shapes as data increase.
For this purpose, we propose the bitten hyper-ellipsoid
representation. In this representation, each situation
is shaped by the positive instances and the negative
instances that are decided based on the meaning of the
situation.

As shown in Fig. 2, this representation is a mixture
of macroscopic cognition and microscopic cognition. In
macroscopic cognition, the boundary of a situation is a
contour of Mahalanobis’ distance from the population
of the positive instances. This boundary forms a hyper-
ellipsoid! . This cognition is quick and rough that can
make up for the lack of data. Microscopic cognition is
realized by the Nearest Neighbor methods? and grows
finer as data increase. By mixing these two types of
cognition, a fine and flexible cognition is realized.
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Figure 2: The bitten hyper-ellipsoid representation

3.3 Cognitive Learning in STNS

In STNS, the state space is divided into overlapped
bitten hyper-ellipsoids (situation 1-7) and a margin
space (situation 0) as shown in Fig. 3. A new percep-
tual input is ascertained whether it belongs to each sit-
uation from the top of the discrimination tree in Fig. 3.

Cognitive learning is realized by extraction and
maintenance of situations. There are two conditions
for situation extraction.

1. R-Situation In the whole state space, there are
enough (more than N, ) data in which the

init
system acquired a specific reward larger than
a threshold (£, ) by a specific behavior.

min
T-Situation In situation 0, there are enough
(more than NZT.) data in which the system
transited to a specific situation other than

[1] uses the same type of representation.

1
2 [9] uses the same type of representation.

— -

Discrimination tree
(0-7 denote situations)

State space (a case of 2-D input)

Figure 3: The state space and the discrimination tree

situation 0 by a specific behavior and did not

acquire a large (more than rZ. ) reward.

2. There is no situation yet which has the specific
behavior and the specific result in condition 1 as
its meaning.

When both of these conditions are fulfilled, a new
situation is extracted. In extraction, the meaning of
the new situation is defined referring to the condition 1,
and positive instances are collected from the history
database.

The extracted situations are maintained by these
five methods.

e Renewal of the population of the positive instances
and the population of the negative instances of
each situation

e Renewal of the boundary of each hyper-ellipsoid
(The boundary is settled just on the farthest pos-
itive instance.)

e Renewal of the order of situations in the discrimi-
nation tree (The nearer situation to rewards is put

upper.)
e Changing the meaning of deformed situations

o Removal of deformed situations

4 Behavior Learning in STNS

In STNS, each situation has a condition behavior.
However, it decides a behavior policy by reinforcement
learning. The main reason is that the cognitive learn-
ing in STNS is on-line learning: it extracts a situation
from a few data and it is assumed that the environment
can be changed, therefore the initial condition behavior
is not always the optimal behavior.



In this section, we propose a new reinforcement
learning method, Interleave Planning-based Reinforce-
ment Learning (TPRL), which is suitable for STNS
which has a flexible situation representation.

4.1 STN

An STN is an MDP model which consists of the
transition probabilities between situations and the ex-
pectations of immediate rewards accompanying tran-
sitions. The transition probability from situation 7 to
situation j by behavior b is called p(7, j; b), and the ex-
pectation of the immediate reward which are acquired
by the transition is called r(i, j; ).

If Marcov property is assumed, the problem of find-
ing the optimal policy on an STN is a Markov decision
problem. Accordingly, the optimal policy is found by
solving the optimal equation of dynamic programming:

p(i,3;:0){r(i, j;0) +9UG) (1)

U(7) = max
beD 4

JjEX
where X 1is the state space, B is the behavior space,
i (i € X) is a situation, and v (0 < v < 1) is a dis-
counting factor. U (¢) is the utility of situation ¢, which
1s the expectation of the discounted sum of the rewards
received over time by the optimal policy.

In STNS, the MDP model cannot be given in ad-
vance since the situation representation is changed dy-
namically. Therefore, the model must be estimated at
the same time as the learning of a behavior policy. This
problem is in the domain of reinforcement learning.

4.2 TPRL

STNS uses a new reinforcement learning method,
IPRL, for behavior learning. Many reinforcement
learning methods keep the estimated utilities of situa-
tions, and improve them little by little after every be-
havior to convergent to the optimal values. However,
IPRL does not keep them but calculate them when
necessary in order to adapt to the changes of situation
representation immediately. For the calculation, IPRL
uses a interleave planning method on STN? .

Interleave planning performs partial planning and
plan execution alternately. As a result, it can bal-
ance between reactiveness and deliberativeness. Ya-
mada [11] proposed interleave planning which deter-
mines the timing to switch planning into execution by
the success probability of a plan. STNS uses a method
similar to this, which limits the search space by the suc-
cess probability. By this method, a short plan is made
and executed reactively in uncertain environments, and

3 The policy iteration algorithm of dynamic programming is
another promising method for behavior learning in STNS

a long plan is made and executed deliberatively in cer-
tain environments. Therefore it can balance between
reactiveness and deliberativeness automatically.

A plan P in STNS is a list of pairs of a behavior and
a target situation of the behavior:

P = ((by,dy), (ba,d2), ..., (bn, dn))

where n 1s the length of the plan, b; is the ith behavior
in the plan, and d; is the target situation of the behav-
ior. The success probability of a plan is defined as the
product of all transition probabilities in the plan.

IPRL calculates approximate utilities of situations
using the optimal equation (Equation 1). The tran-
sition probability p(¢, j;b) and the expectation of the
immediate reward r(Z, j; b) are estimated by the maxi-
mum likelihood estimation from the data in the history
database.

The procedures for planning are as follows:

1. Plans are developed forward from the current situ-
ation within the limits that the success probability
is larger than p,,;, and the length is shorter than

nmax M

2. The utilities of all situations which correspond to
leaves of the search tree are assumed 0.

3. The planning backtracks from leaves to the root
(the current situation). In every node, the utility
of the situation is calculated by Equation 1. And a
pair of the behavior which maximizes the right side
of the equation and situation j which maximizes
the inside of )" is back-propagated to the parent
node as a element of a plan.

4. When backtracking returns to the root, only one
plan remains. This is the picked plan, and called
the master plan.

Then, the system starts to execute the master plan
in the environment. Plan execution is stopped and
planning is started again after the last behavior in the
master plan is executed, or another situation than the
target situation is reached.

5 Experiments
5.1 Navigation on 2-D Input

To show the validity of STNS, we show a simple
experiment on computer simulation. Fig. 4 shows the
navigation problem on 2-dimensional input. Every trial
starts after the goal is settled at an arbitrary position
and the rover is set at an arbitrary position outside of
the goal in an arbitrary direction. The trial ends when
the rover arrives at the goal, and the next trial starts



immediately. At the beginning of learning, there are
only the goal area and situation 0 (the margin space) in
the state space. We set parameters as follows: N, =

intt
3,NL, = 15,78, =5.0,v = 0.7, pmin = 0.1, nypar =
7.

Task:
To navigate a 16x12 rectangle rover from an arbitrary position to the only goal (a small circle whose radius is 5) in
a 100x100 square continuous plane.
The goal is settled at an arbitrary position in the 72x72 square area at the center of the room.
There is no obstacle but the wall around the room.
Perceptual Input (2-dimensinal):
The real-valued (x, y) coordinates of the goal on the coordinate system fixed to the rover (the goal sensor).

Rewards:

1. Arrival at the goal: +10
2. Collision with the wall: -1 gOal
3. Trying to rotate over 90 degrees: -1
e . )

(The rover can look any direction by at most 90 degrees rotation
because of the symmetry of the behaviors.)
Behaviors:
forward movement, backward movement, clockwise rotation,
counterclockwise rotation.
(The rover is assumed to be able to make collision-free rotation.)
Stopping Conditions of Behaviors:
1. Getting some reward.
2. Arrival at the target situation in the master plan.

i:/‘ "
rover

Figure 4: The navigation problem on 2-D input

Learning has converged after about 1200 behaviors
are executed on average. Fig. 5 shows a typical state
space after leaning has converged and the optimum
state space. The small circle at the center of each space
denotes states in which the rover arrives at the goal.
As shown in this figure, good situation representation
and good behavior policy were acquired.
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<«— forward move

—> backward move

~7 clockwise rotation

—= counterclockwise rotation

a. State space after convergence

b. Optimum state space

Figure 5: A state space after convergence and the op-
timum state space

5.2 Flexibility Test

To test the flexibility of STNS, we conducted two
experiments on computer simulation. One is a flexi-
bility test to sensor trouble and the other is a flexibil-
ity test to actuator trouble. In both experiments, we
prepared an STNS after 10000 behavior steps in the
above experiment (shown in Fig. 5a), changed the en-
vironment, and then let the STNS continue learning in
the new environment. As changes of environment, we
rotated the direction of the goal sensor in the former
test, and made the revolution rate of the left wheel
lower in the latter test. Fig. 6 shows a typical result
in the case of 15 degrees rotation of the goal sensor
and a typical result in the case of 15% lower speed of
the left wheel. As shown in this figure, passably good
situation representation and good behavior policy were
acquired.

State space after convergence

Optimum state space State space after convergence Optimum state space

a. Sensor Trouble (15° rotation of the goal sensor)

Figure 6: Results of the flexibility test

b. Actuator Trouble (15% lower speed of the left wheel)

In both experiments, STNS can flexibly adapt to
small changes while keeping the high performance by
transforming the shapes of situations, and STNS can
stably adapt to big changes by eliminating deformed
and obstructive situations and starting again from the
blank state space. These two types of adaptation are
switched to each other autonomously. Even in the case
of big changes, learning converged after a delay of at
most 1000 behavior steps compared with learning from
the blank state space. So it can be said that learning
of STNS is stable.

5.3 Navigation on 8-D Input

The last experiment is a navigation problem on 8-
dimensional input. The setting i1s almost the same with
the previous navigation problem on 2-dimensional in-
put. But one obstacle was settled in the room and the
goal was fixed to the position shown in Fig. 7a. And
the rover got a 6-dimensional obstacle sensor shown
in Fig. 7b in addition to the 2-dimensional goal sen-

sor. We set parameters as follows: NZ., =9 NL. =
20,72, =5.0,% = 0.7, pmin = 0.2,0mae = 7. This

problem is difficult because the dimension of the state
space is high and the paths through the state space is
not continuous.

goal ar

Ox.y)

» 1l

X

20°

rover

b. 6-dimensional obstacle

a. Work space Sensors

Figure 7: The navigation problem on 8D input

Fig. 8 shows an typical segmentation after enough
leaning (28000 behavior steps) and the optimum seg-
mentation. The 8-D state space was mapped onto the
2-D work space by fixing the attitude of the rover. As
shown in this figure, not bad situation classification
and not bad behavior policy was obtained in the areas



a. Segmentation after enough learning
Figure 8: A segmentation after enough learning and the optimum segmentation

near to big rewards. However, in the areas far from big
rewards, no situation was extracted. The main reason
is that the ability for cognitive learning is not suffi-
cient. For compensating for this weak point, I think
hierarchical learning or empirical creation of new axes
of the state space is effective.

6 Conclusion

We have proposed STNS, a method for perform-
ing both cognitive learning and behavior learning si-
multaneously with task execution, and shown that the
method is effective to acquire good state representation
and good behavior policy in continuous state space.
The representation also have flexibility to changes of
the environment.

This sort of dual learning system can be regarded
as a symbol processing system grounded on real envi-
ronments. Reinforcement learning of behavior policy is
a kind of symbol processing, and learning of the state
representation is regarded as learning of symbols. But
reinforcement learning system can deal with symbols
only for representing states or behaviors. So such sys-
tems can execute only very simple symbol processing.
In order to expand this sort of symbol system, the fol-
lowing four functions are worth considering: structur-
ing symbols, symbolizing objects, reusing symbols, and
sharing symbols. Furthermore, in order to embed this
sort of cognitive agent into the environment, parallel
processing of information should be necessary.
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