Intelligent Computer Aided Design

D.C. Brown, M. Waldron and H. Yoshikawa (Editors)

Elsevier Science Publishers B.V. (North-Holland) 163
© 1992 IFIP. All rights reserved.

An Intelligent Integrated Interactive CAD
— A Preliminary Report

Deyi Xue, Hideaki Takeda, Takashi Kiriyama,
Tetsuo Tomiyama, and Hiroyuki Yoshikawa

Department of Precision Machinery Engineering
Faculty of Engineering

The University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

This paper describes a preliminary report about a project to develop a third
generation intelligent CAD system, called IIICAD (Intelligent Integrated
Interactive CAD) system, which is currently conducted at the University of
Tokyo. First, we show that from design experiments we can obtain a cognitive
design process model that can be transformed to a computable model. Second,
we discuss that qualitative physics can be used to describe knowledge about
the physical world and to construct a new framework called metamodel for
representing design objects. Third, we describe the construction of the IIICAD
system that can demonstrate the usefulness of formalizing design processes and
of having an integrated data description framework. A prototype of IIICAD is
also shown.

1. INTRODUCTION

One of the major problems in developing so-called intelligent CAD (Computer Aided
Design) systems is the complexity of design knowledge. The only way to overcome this
problem is to construct a sound, tough theoretical basis for CAD (Veth, 1987) that consists
of theories about design processes, design objects, and design knowledge. Without having
these theories, we might be trapped in a pitfall that system development is carried out in an
ad hoc manner.

The first generation intelligent CAD was based on the expert systems technology
(Gero, 1987). Typically, a routine design problem is described in the following way
(Brown and Chandrasekaran, 1985). The specifications can be decomposed into elementary

164

subproblems each of which has a solution corresponding to a structural element. A design
solution is found by combining these subelements. Thus, the whole design process can be
regarded as a problem solving process, and well-known artificial intelligence techniques for
problem solving can be used. The second generation intelligent CAD further incorporated
abilities for constraint management and solving (Suzuki, Ando, and Kimura, 1990). This
means that the design solution as a combination of subelements is now associated with a
network of constraints over attributes, properties, etc. For instance, geometric entities can-
not exist without fulfilling geometric constraints. Techniques for geometric reasoning and
geometrical constraint management became, therefore, an essential part of the second gen-
eration intelligent CAD. However, with only these abilities, the system cannot handle
more sophisticated information. For example, it is often advocated that constraints
represent the designer’s intentions that are needed in various design stages (Inui and
Kimura, 1990). However, if the designer’s intention refers to functional desires, geometric
constraints do not suffice to deal with them. A new generation intelligent CAD must be
built on deep understanding about both design processes and design objects.

This paper presents our approach towards a new generation of intelligent CAD sys-
tems called //ICAD (Intelligent Integrated Interactive CAD) (Tomiyama and ten Hagen,
1987). The IIICAD project first started at the Centre for Mathematics and Computer Sci-
ence (CWI) in Amsterdam (Tomiyama and ten Hagen, 1987; Veth, 1987). Currently, it is
continued both at the University of Tokyo and at CWI. For further technical details of
each topic, readers are invited to refer to other publications cited in the text.

The rest of the paper is organized as follows. Chapter 2 describes a theory of design
processes that we have developed (1) to understand design and (2) to serve as a basis for
IIICAD (Takeda, Tomiyama, and Yoshikawa, 1990; Takeda, Veerkamp, Tomiyama, and
Yoshikawa, 1990). We began studies about design processes with design experiments. By
analyzing the protocols derived from design experiments, we obtained a cognitive design
process model. Based on logical formalization of the cognitive design process model, we
developed a computable design process model.

Chapter 3 discusses a theory for representing design objects in the IIICAD environ-
ment. We employ qualitative physics (Bobrow, 1985; Weld and de Kleer, 1990) to
represent knowledge about the physical world and to manage design object models (Kiri-
yama, Yamamoto, Tomiyama, and Yoshikawa, 1989). For this purpose, we use Qualitative
Process Theory (Forbus, 1984) based on which a qualitative reasoning system (Kiriyama,
Tomiyama, and Yoshikawa, 1990) was developed.

Chapter 4 is a preliminary report about the implementation of IIICAD. First, the
architecture of IIICAD is proposed and the representation of both design processes and
design objects are then discussed based on the results of Chapters 2 and 3. In order to
represent design knowledge, IIICAD uses a language called IDDL (Veth, 1987; Tomiyama,
Xue, and Ishida, 1991) in which design process knowledge is represented in scenarios and
divided in two levels, viz., action level and object level. The design object is represented
by entities and their relationships, and the metamodel mechanism (Kiriyama, Yamamoto,
Tomiyama, and Yoshikawa, 1989) handles the object level information. Chapter 5 con-
cludes the paper.

165

2. THEORY OF DESIGN PROCESSES

Compared with design objects, design processes are not well described nor even under-
stood. In this chapter, we first introduce an evolutionary design process model which is
based on General Design Theory (Yoshikawa, 1981; Tomiyama and Yoshikawa, 1987).
Then, we build a cognitive design process model based on design experiments. This cog-
nitive model is given a logical formalization and transformed into a computable design pro-
cess model (Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990). The computable
model serves as the basis of the architecture of IIICAD.

2.1. Evolutionary Design Process Model

In General Design Theory (Yoshikawa, 1981; Tomiyama and Yoshikawa, 1987), design is
regarded as a mapping from the function space in which design specifications are described
in terms of functions onto the attribute space in which design solutions are described in
terms of attributes. Roughly speaking, a design process starts with a functional
specification of the design object and ends up with a manufacturable description. In non-
trivial design, we cannot get a design solution from a design specification directly; design
is a stepwise, evolutionary transformation process. This evolutionary process can be
modeled by the metamodel” concept (Fig. 1).

Gotaaton > - (DO @d— - -Gt

mj Mi: metamodel

mj'l. aspect model

o ej: evaluation
fail succeed

Figure 1: Evolutionary Design Process Model

A metamodel reflects the designer’s mental model (Johnson-Laird, 1983) about the
design object (Fig. 2). When he is given specifications, he roughly imagines how a design
solution looks like, what the working principles are, how it is manufactured, etc. He might
have preferences, but anyway begins with some working model. He then tries to arrive at
a description of a final solution, using sketches, skeletons, symbols, etc. by evaluating ideas
in a stepwise manner. This is the evolutionary nature of design. In a practical sense, the
metamodel is a database to store all the information about the design object. Aspect
models for various kinds of evaluation are derived from this metamodel (see Section 3.2).

+ The metamode! concept is used in many different ways throughout this paper. However, they all
form a single theory about how to deal with design knowledge.

166

Every time the metamodel receives a piece of new information about the design object, a
new world is created, which represents a design step. Thus, in this evolutionary design
process model, design is treated as a sequence of unit design processes. The designer per-
forms these processes by observing the current status of the metamodel and deciding what
to do the next, generating candidate solutions, evaluating these candidates, and deciding
whether a candidate could be adopted or not. The designer can improve the design object
toward the final solution or go back to the previous step.

== B E=

Mental Model

Figure 2: Metamodel as a Mental Model

2.2. Design Experiment and a Cognitive Design Process Model

In order to understand how design objects evolve, we conducted design experiments. This
is a kind of psychological experiment in which designers are asked to design a mechanism
from a given set of specifications. The whole design session is recorded by a video tape
recorder and a CAD-like drawing tool and analyzed with the protocol analysis method. A
cognitive design process model is derived from the results of design experiments (Takeda,
Tomiyama, and Yoshikawa, 1990). This model shows that a design process is composed
of unit design cycles (Fig. 3). Each design cycle has the following five subprocesses:

(1) Awareness of the problem to pick up a problem by comparing the object under con-
sideration and the specifications.

(2) Suggestion to suggest key concepts needed to solve the problem.

(3) Development to construct candidates for the problem from the key concepts using
various types of design knowledge. When developing a candidate, if there is found
something unsolved, it becomes a new problem which is solved in another design
cycle.

(4) Evaluation to evaluate the candidates in various ways, such as structural computation,
simulation of behavior, and cost evaluation. If a problem is found as the result of

167

evaluation, it also becomes a new problem to be solved in another design cycle.

(5) Conclusion to decide which candidate to adopt so as to modify the descriptions of the
object.

We have also found that design protocols have two different focuses. While there
were protocols regarding object level knowledge, we could also observe action level
knowledge, e.g., to plan the design process, to decide the knowledge to be used, etc. The
entire design process is mainly managed by the action level design process knowledge.
This distinction between object level and action level is useful to consider the architecture
of IIICAD.

2R (AwareneSS Of Problem oo

)

(" Development " Yeoess!

¥

C Evaluation

(" Suggestion

- — Conclusion J

Figure 3: Design Cycle

2.3. A Logical and Computable Design Process Model

In order to represent design process knowledge in IIICAD, a computable model to describe
design cycles is developed (Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990). Design
processes are logically formalized as follows:

D, UK, |- P,

where D; is a set of logical formulae describing design solutions that the designer want to
obtain, K, is knowledge on object properties and behaviors, and P is properties of design
solutions, respectively. Required specifications are included in P. First assuming that K|,
is the design knowledge and P is the specifications, the designer tries to obtain a candidate
solution with abduction (Fann, 1970). Then by using deduction, the candidate is detailed.
If the candidate does not satisfy the specifications, the designer either tries alternative can-
didates, or modifies design knowledge or specifications.

The cognitive design process model can be interpreted in the context of this comput-
able model. The suggestion subprocess is an abductive process to obtain D, from P and
K,. The development and evaluation subprocesses are deductive processes to obtain P
from D; and K,. In the development and evaluation subprocesses, because of the incom-
pleteness of knowledge base, contradictions sometimes occur. These contradictions are

168

&

Action Level Inference _
Deduction

\
KauC I" 0
Ka: Knowledge on Actions’

_ Operations to Object Level

_ (Deduction, Abduction,

....Circumscription, etc.)

{ Object Level Inference 14 ction \
Circumscription N g

Ko u Ds |— P |
o

Conditions
of Object Level

Abduction

/ﬁmﬂ'mwm

Ds: Design Solution
P: Properties and Behavior of Design Solution
Ko: Knowledge on Objects

Figure 4: Two Levels of Design Process Knowledge

considered exceptions and handled by circumscription (McCarthy, 1980), so that the
knowledge on object can be modified to subsume the exceptions. If the required properties
cannot be derived because of the modifications of the knowledge base, it should be defined
as a new problem. This is a jump to an a wareness-of-problem subprocess.

As mentioned in the previous section, we found two different levels in the design pro-
tocols (Fig. 4). In the computable design process model, the action level reasoning system
selects the most appropriate knowledge base and schedules the most appropriate object
level reasoning method, based on reports from the object level reasoning system. This
meta-level inference structure drives the evolution of the design object.

3. THEORY OF DESIGN OBJECTS

Although the representation of design objects is perhaps the most developed area in CAD
studies, there are still problems to be solved, such as

e to describe knowledge about the physical world that is crucial for creative design, and
e to describe a design object in an integrated way.

In this chapter, we first introduce qualitative physics to symbolically describe and rea-
son about dynamic physical phenomena (Bobrow, 1985; Weld and de Kleer, 1990). Then
we introduce a mechanism called metamode! mechanism as a fundamental framework for
modeling design objects (Kiriyama, Yamamoto, Tomiyama, and Yoshikawa, 1989). Here,
once again we use the concept of metamodel that was once introduced in the evolutionary
design process model. Techniques of qualitative physics allow for symbolic descriptions
that reflect the designer’s mental model and the physical restrictions imposed on the design
object. Using knowledge about the physical world, the metamodel mechanism maintains

169

integration and consistency of various aspect models and supports the designer in an intelli-
gent way.

3.1. Qualitative Process Theory

Qualitative physics (Bobrow, 1985; Weld and de Kleer, 1990) serves as a framework to
symbolically describe knowledge about the physical world. It has two roles, viz., model-
ing structure of a physical system and reasoning about its dynamic behaviors. We employ
the basic ideas of Qualitative Process Theory (Forbus, 1984) to represent physical
phenomena. The theory consists of the following notions. An individual represents an
entity existing in the physical world. An individual view denotes how a set of individuals
are seen from a particular point of view. For example, a heater is an individual view that
refers to any entity which can be used as a heat source. A process is a description about a
physical phenomenon that influences on the system. We have developed a qualitative rea-
soning system based on Qualitative Process Theory on Smalltalk-80 (Kiriyama, Tomiyama,
and Yoshikawa, 1990) and this system plays a central role in the metamodel mechanism.
Our qualitative reasoning system uses de Kleer’s ATMS (Assumption-based Truth Mainte-
nance System) (de Kleer, 1986) to maintain information about different feasible situations.
Due to this, the system is capable of finding out identical situations; for instance, it can
conclude that a motor rotates, instead of generating endless identical situations.

74
=

a wedge a coil and magnetic field ~ a cylinder
=
=/
a pair of gears a spring a pulley

Figure 5: Physical Features

Here, we introduce the concept of physical features (Kiriyama, Yamamoto, Tomi-
yama, and Yoshikawa, 1989). The concept of features (Dixon and Cunningham, 1989) is
now considered vital for representing teleological knowledge about the relationship
between a concept and attributive information. Similarly, a physical feature describes
knowledge about a physical phenomenon and attributes (Fig. 5). For example, a wedge is
a physical feature that describes the relationship between two intersecting surfaces and phy-
sical phenomena, such as force diversion and friction angle. We use Qualitative Process
Theory to represent physical features. The components of a physical feature are
represented by individual views and physical phenomena by process views.

170

: IndividualDefinition

B (SunGear SunGear1) InContact (Shaft1 Bearing1)
M (CarrierSet CarrierSet1) ; InContact (Body1 Bearing1)
: (CarrierSet1 % Shaft1 « Shaft2) InContact (Shaft1 SunGear1)'
(CarrierSet1 % Bearing1 ¢ Bearing2) InContact (InnerRing1 Interpositiont)
{ CarrierSet1 % InnerRing1 ¢ InnerRing2) InContact (OuterRing1 Interposition1)
(CarrierSet1 % Interposition1 ¢ Interposi InContact (Shaft1 InnerRing1)
{ CarrierSet1 % OuterRing1 ¢ OuterRing2 Unchangeable glr?ont:c't E ._E,Odé1 01ut'er;ﬁlng 1|G?ear1)
CarrierSet1 % Body1 « Body1) nc areAxis unGear1 Interna
E CarrierSet1 % Carrier1 ¢ Carrier1) Predicate InContact (HollowShaft3 InternalGear1
il (PlanetGear PlanetGear2) InContact { HollowShaft1 PlanetGear1) ‘
B (PlanetGear PlanetGear1) InContact (HollowShaft2 PlanetGear2)
(InternalGear InternalGear1) 7 InContact (PlanetGear1 InternalGear1
§ (SpurGearSet SunGearSet1) 4 InContact (PlanetGear2 InternalGear1
(SunGearSet1 % Shaft1 ¢ Shaft1) i iz} InContact (Bearing2 Shaft2)
(SunGearSet1 % Bearing1 ¢ Bearing1) . gl InContact (Bearing2 Body1)
(SunGearSet1 % InnerRing1 ¢ InnerRing1 wiisf InContact (Interp0§|t|on2 InnerRing2)
(SunGearSet1 % Interposition1 ¢ Interpo ! 4 InContact (OuterRing2 Interposition2)
(SunGearSet1 % OuterRing1 ¢ OuterRing X A InContact (Shaft2 InnerRing2)
(SunGearSet1 % Body1 ¢ Body1) Ml InContact (0ute_rF\Ing2 Body 1)
(SunGearSet1 % SpurGear1 ¢ SunGear1 f q InContact (Carrier1 PlanetGear1)
(HollowShaft HollowShaft1) ; ‘ 4 InContact (Carrier1 PlanetGear2)
4 (HollowShaft HollowShaft2) InContact (HollowShaft1 Carriert)
| (HollowShaft HollowShaft3) i InContact (Carrier1 HollowShaft2)

Figure 6: Physical Feature Editor

We are currently conducting a project to build a physical feature knowledge base that
may contain of the order of 10,000 knowledge chunks. This knowledge base, together
with the qualitative reasoning system mentioned above, is used in IIICAD to model a
design object and to reason about its behaviors. Figure 6 shows an example physical
feature description as appears on the physical feature editor. At the time of writing this
paper, we have in the database about two thousand chunks of knowledge about physical
rules and basic kinematics that are considered common sense for engineering designers.

Lenat et al. at MCC are conducting the Cyc project aiming at building a large scale
common sense knowledge base (Lenat and Guha, 1989). Feigenbaum et al. at Stanford
University have started the How Things Work project to collect knowledge about physical
devices for engineering design, diagnosis, etc. (Cutkosky and Tenenbaum, 1990). Our pro-
ject is similar to these projects but differs in that we have our own inference engine (the
Cyc project aims at much bigger goal) and that we use Qualitative Process Theory as the
ontology (Hayes, 1985). (The Cyc and How Things Work projects have different ontol-
ogy.)

3.2. Metamodel Mechanism to Integrate Design Object Models

During the course of design, the design object has to be described and evaluated from vari-
ous points of view. These models, called aspect models, include a geometric model, a
kinematic model, a dynamic model, etc., and are not independent from each other. We

171

consider that we observe a physical phenomenon associated with the design object and
create an aspect model focusing on only interesting particular properties and attributes. All
other properties and attributes are ignored. This modeling process takes place according to
a particular background theory and an aspect model can have different representations for
different purposes (Fig. 7). For example, a geometric model is composed of geometric ele-
ments such as vertices, edges, faces and solid objects. Its background theory is algebraic
geometry.

. . physical
(71esugnl object) world
*.‘7

C éépeét model

¥

(representation)

; kground

scheme

Figure 7: Physical World, Model, and Representation

The metamodel mechanism has the following three roles, and by doing so reflects the
designer’s mental model about the design object. First, it serves as a central model of the
design object by maintaining relationships among various kinds of aspect models. Second,
it provides a qualitative model of the design object as a combination of physical features.
Third, it provides a design workspace for the evolutionary design process.

The metamodel mechanism contains a model builder, an aspect model generator, and
a consistency manager. The model builder constructs a network of concepts relevant to the
design object from a primary model that is a combination of physical features (Fig. 8).
This primary model can be constructed from functional information by the user using the
computable design process model. We define a function as an abstract description of
behavior and are developing a function modeler that can handle the trichotomy of function,
behavior, and structure based on the qualitative reasoning system (Umeda, Takeda, Tomi-
yama, and Yoshikawa, 1990). The qualitative reasoning system reasons about all possible
behaviors of the design object from the primary model and constructs a network of con-
cepts (Fig. 9). This network contains concepts about behaviors, physical features, relation-
ships among these concepts. Thus, the concept network is reflection of the mental model
of the designer.

The aspect model generator generates an aspect model of the design object by select-
ing only relevant concepts to the aspect model from the concept network. In this context,
an aspect model is a partial description of the concept network, such that it contains only
information about the object from a particular point of view. The information of an aspect
model can be further converted to be used by other modelers (such as geometric modelers
and numerical computation systems) for evaluation. This means that the metamodel
mechanism provides a pluggable environment that is different from product modeling.

172

Primary Model
i / \
Indictor a?if\ar:r.:Sg’las | N » h S
ndictor: 16349 9 =iI~1+
Commutator gnaticAttraction)
e
Indictor
|f \| N qeamssmnp N
Il
SupportRelation SupportRalati Bearing ommutatorFor3RI § agnaticRapulsion
ManyGears supportRelation: 1392 supportRelation:49 @aring:6360
anyGears:2599 EL ﬁ sM)
ManyGears tt ttt Connection agneticRapulsion:
support - support N\ 2]
supported supported .
? idd j SupportRelatio (=
— supportRelation:949
| R G‘Mgou \’ Shaft Connection0 NsinglePole
- i G772 ——; 0 T -
sm
]
3994 i
supported [Connection120 | Powerunit
180
- partt o Gear Shaft SupportRelation m_u_ =]
-)vfm"":r’“ gear:16252 shaft:13977 supportRelation:8682
Connection 180 PowerUnit2
240
- - 2
RackAndPin I\ q
1ckANdPIn:5480 A \./
support
supported Connection240 Rotation
RackAndPin SupportRelagion SupportRelat ——
supportRelation: supportRelation: 13249 p/Eﬁring —p— q
—
_-_E .lE bearing:5454 b
Spring lectricConnectio Rotation2
spring: 13414 ttt ttt p———————
support support
Spring supported supported
N ElectroMagnetN SsinglePole
_ [| 3 glef
hh;vlh«-D‘)P")
clear unification dacomposition

Figure 8: Primary Model

The consistency manager maintains consistency among aspect models and propagates
modifications.

4. IMPLEMENTING INTELLIGENT INTEGRATED INTERACTIVE CAD

In the previous chapters, we briefly outlined theories and techniques for representing
knowledge about design processes and design objects in IIICAD. Integrating these results,
this chapter discusses the architecture of IIICAD and illustrates how design processes and
design objects are represented. Finally, we show the implementation method for this sys-
tem and give an example about how IIICAD can be used.

4.1. System Architecture

Figure 10 depicts the architecture of IIICAD. It has three major components, viz., a design
process handling system, a metamodel mechanism, and a user interface manager.

Design process knowledge is described in scenarios. A scenario, written in IDDL
(Integrated Data Description Language) (Veth, 1987; Tomiyama, Xue, and Ishida, 1991) is
a set of rules and divided into two levels, viz., action level and object level. Action level
scenarios and object level scenarios are programmed in action level knowledge base
browser and object level knowledge base browser, respectively. The supervisor has two

Metamodel

RotationToRotationTransformation
rotationToRotationTransformation:0

c-C

Support
support:7258

Tttt

support
supported

Support
support:348

Tttt

support
supported

Support
support:4206

ttt

support
supported

Support
support: 1988

ttt

support
supported

1

| |

Support
support: 146 11

ttt

support
supported

Support
support: 156160

ttt

support
supported

Pair
pair: 10429

Pair

partt
part2

Temperature
temperature: 1

[NPT

Shape
shape:3

entity

Shape
shape:4

entity

l

T

T X T

| 11

GuideDirection
guideDirection:3

Temperature
temperature:4

e

entity

eMily‘ H

Temperature
temperature:3

o

entity

entity

Temperature
temperature:2

P

entity

Rotationinertia
rotationinertia: 1

; El-mr*

entity

Avas

m v s

T

RotationalPartsMovement

Temperature

Temperature

rotationaiPartsMovemant: 1

C

entity

temperature:7

(e

entity

entity H

temperature:0

O

entity

antity

T Y 7) —'

y — T v T

Temparature

QuidaDiraction GuidaDiraction

'l RotationalPartsMovement
rotationalPartsMovement:0

temperature:5

guideDirection:2

guideDirection:0

173

i 7

[— o

Figure 9: Concept Network

design process managers, i.e., an action level manager and an object level manager. The
action level manager receives reports from the object level manager and controls the object
level design process by executing action level scenarios from the action level scenario
base, i.e., selecting the most appropriate object level scenarios from the object level
scenario base, choosing the most appropriate reasoning method, and permitting interactions
with the designer through the design browser. In fact it proceeds the action level design
process step by step, asking for the designer’s confirmation.

The action level design process knowledge describes relationships between the situa-
tions of the metamodel mechanism and the suitable operations to be performed. This
means that the action level manager performs the design cycle, i.e., awareness-of-problem,
suggestion, development, evaluation, and conclusion subprocesses introduced in Section
2.2.

The object level manager solves object level problems by using knowledge about par-
ticular types of object that is described in selected scenarios. There are three inference
system in the object level manager, i.e., an abduction system, a deduction sysiem and a cir-
cumscription system to perform different kinds of operations.

Operations to the design object are realized by the metamodel mechanism. As dis-
cussed in Chapter 3.2, it has a model builder, an aspect model generator, and a consistency
manager. The supervisor requests the model builder to add new information about the
design object that can be obtained either from the design browser, from aspect models
through the consistency manager, or by constructing a concept network about the design

174

User Interface Manager

Action Level :' r Object Level
KB Browser Fla e KB Browser

Supervisor — Object Level
'Scenano-base . Action Level Manager -~ ‘laddl ' Scenario-base -

 Object Level Manager

Abducnon System I:

Deductlon System]
Clrcumscnptron Syste—'

Metamodel Mechanism

o Aspect Model
Qualltat}ve Generator
Builder Reasoning

Prototype | System Consmtency
Definition :

Manager

Multiple World echanism

External
Model1

External
Model2
External
Model3

Figure 10: System Architecture

175

object from the primary model. The aspect model generator is used to generate aspect
models based on descriptions about external modelers (such as a geometric modeler). The
consistency manager maintains integration among different aspect models. If there is a
modification to the design object, it is reported to the supervisor and, if necessary, the con-
sistency manager tries to keep the consistency through the aspect model generator. A stan-
dard description about an entity or a physical phenomenon is called a prototype which is
programmed in the prototype browser. Prototypes can be used to build a primary model,
or to construct a metamodel from the primary model.

A design object is described in several worlds (called multiple world mechanism)
(Veerkamp, 1989) to realize its evolution. Only one world is active and operations are
performed only in this active world. Worlds are organized into an environment called
world manager. A world has both a primary model and a metamodel generated from the
primary model. A primary model consists of objects, facts and selected scenarios. Objects
and facts written in IDDL are used to describe the entities and the relationships among
them. Selected scenarios are the knowledge selected from the object level scenario base.
Objects and facts in a primary model are organized by ATMS. The metamodel is gen-
erated from the primary model by using the qualitative reasoning system (see Section 3.2).
The data in a metamodel is also organized by ATMS. These two ATMS systems
cooperate, such that suggestions in a design cycle are treated as assumptions for the
metamodel mechanism.

In IIICAD, an evolutionary design process takes place in the following way (see Fig.
11). Suppose at a certain step in a design process we have metamodel” M;_; that consists
of three facts, a, b, and ¢, and we select ¢ as the problem to be solved. The action level
manager of the supervisor selects an appropriate object level scenario from the object level
scenario base to make suggestions for this problem. This object level scenario becomes an
selected scenario and a suggestion s1 is made, which is added to the database by the
model builder. Then, suggestion s1 is developed by using suitable object level scenarios
chosen by the action level manager and an aspect model mli is generated by the aspect
model generator. If evaluation for s1 is a failure, all of the data related to this suggestion
should be removed by using ATMS. If evaluation for another suggestion s2 is a success,
then the metamodel evolves to M;,; by adding s2.

4.2. Representation of Design Processes

4.2.1. Scenario

In IDDL, a scenario is composed of a set of rules and executed in much the same way as
conventional production rule systems (for more information see (Tomiyama, Xue, and
Ishida, 1991)). A rule has a well-known syntax of

IF <conditions> THEN <results>.

Both of <conditions > and <results > are a list of predicates connected with & (logical and)
and | (logical or). A predicate may be preceded by a negator ~. We have objects to

+ Here metamodel denotes the whole database that contains all the information about the design ob-
ject.

176

Metamodel: Mi-1 Metamodel: Mi Metamodel: Mi+1
® ® ©) @ 82
s © ol M .
: O
problem data
awareness O ‘
scenario
7771 suggestion []
NN —» dependency
s

development Aspect | Aspect . relation

1

Model m1 Mod/ m#

e aspect model
generation

=eie- gvolution

S evaluation

conclusion

..

Figure 11: Design Process with Metamodel Evolution

denote entities, predicates (or facts) to denote relationships among entities, and functions
(or attributes) to denote properties of entities (see Section 4.3).

A rule can be used in forward reasoning for deduction and in backward reasoning for
abduction. (Strictly speaking, abduction should not be realized by simple backward reason-
ing.) ATMS is available to deal with reasoning concerned with assumptions.

An action level scenario can also execute other action level scenarios by built-in
predicate use. After the execution of such scenarios, the execution control will be returned
to the original scenario. For choosing the most appropriate scenario from the object level
scenario base for a given situation, we use a built-in predicate select. Built-in predicate do
is used to perform object level operations such as abduction, deduction or circumscription.

4.2.2. Representation of Design Processes Knowledge

In IIICAD, design process knowledge is described both in the action level and in the object
level. The action level design process knowledge is used by the action level manager to
control the design process and has more general and abstract descriptions than the object
level design process knowledge.

Figure 12 shows the top action level scenario that basically executes the design cycle.
Every time the action level manager finds matching rules, it asks for the designer’s
confirmation. This suggests that the designer and the supervisor design a design process,
which can be realized by introducing a second-order predicate logic capability. The
scenario should be read in the following way.

177

topActionLevelScenario

"Top level operation”

BEGIN
IF TRUE THEN use(addSpecification),
"(1) Add specification”
IF TRUE THEN use(problemAwareness),
"(2) Try to set a problem"
IF problem(X) THEN use(suggestion),
"(3) Try to make suggestion"
IF suggestion(X) THEN use(development),
"(4) Try to make development”
IF suggestion(X) THEN use(evaluation),
"(5) Try to make evaluation"
IF suggestion(X) THEN use(conclusion),
"(6) Try to make conclusion”
IF contradiction(X)
THEN use(contradictionResolution),
"(7) Try to solve contradiction”
IF suggestion(X) & metamodel(X)
THEN do(metaToAspectGeneration),
"(8) Make aspect model from metamodel”
IF suggestion(X) & metamodel(X)
THEN do(consistencylnspection),
"(9) Inspect integration of aspect models”

Figure 12: A Top Action Level Scenario

(1) Specifications can be added at any time.

(2) Problems can be selected at any time.

(3) If there are problems, suggestions should be made.

(4) If there are suggestions, developments can be made.

(5) If there are suggestions, evaluations can be made.

(6) If there are suggestions, conclusions can be made.

(7) If there are contradictions, these contradictions should be solved,

(8) If there are suggestions in metamodel, aspect models can be generated, etc.

(1) Specification Definition.

Specifications are described in terms of objects, facts, and attributes, and placed in the
primary model.
(2) Suggestion.

Figure 13 shows an action level scenario for giving suggestions to a problem. First,
the action level manager selects the most appropriate object level scenario from the object
level scenario base to make suggestions to the problem. If there exist some, these

scenarios should be used by the object level manager; if not, the user should make a
suggestion. If a suggestion is made, the problem should not be focused again.

178

i
"Making suggestion to problem"

BEGIN
IF problem(X) & scenario(Y)
& canSuggestByAbduction(Y,X)
THEN select(Y)
& do(suggestionByAbduction)
& ~problem(X),
"Find suggestion by abduction"
IF problem(X) & scenario(Y)
& canSuggestByFunctionDescription(Y,X)
THEN select(Y)
& do(suggestionByFunctionDescription)
& ~problem(X),
"Find suggestion by function description"
IF problem(X) & canNotBeSuggested(X)
THEN use(makingNewKnowledge),
"Make new knowledge"
IF TRUE THEN succeed,
"END"
END

Figure 13: An Action Level Scenario Used for Suggestion

Object level scenarios are selected and used in the following manner. Suppose we
have a problem rotationPair(r,,r,) to be solved. In the suggestion scenario, several
methods are described in order to get suggestions to the selected problem (Fig. 13). For
example, the object level scenarios shown in Fig. 14 can be used for making suggestions
such as a beltGearDrive (r |,r,) or a gearPair (r,,r,) separately by backward reasoning.

THEN sameDirection(X,Y),

(a) "beltGearDriveDescription" Scenario

1 i ription i
BEGIN BEGIN
IF beltGearDrive(X,Y) IF gearPair(X,Y)

THEN rotationPair(X,Y), THEN rotationPair(X,Y),
IF beltGearDrive(X,Y) IF gearPair(X,Y)

THEN ~sameDirection(X,Y),

(b) "gearPairDescription" Scenario

Figure 14: Object Level Scenarios Used for Suggestion

179

(3) Development.

Detailed descriptions of a suggestion are obtained in the development subprocess.
The scenarios in Fig. 14 can also be used for development purpose by forward reasoning
such as to conclude that if the suggestion is a beltGearDrive (r,75), it has the property of
sameDirection (r |,r,). Here the two rules (see Fig. 14 (a)) represent the knowledge K,,,
beltGearDrive (ry,r,) represent the design solution Dy, rotationPair(ry,rp) and
sameDirection (r |,r,) represent the properties of design object P (see Fig. 4). The con-
struction of the metamodel from a primary model is also considered as a development.

(4) Evaluation.

The evaluation of a suggestion is performed in the following way. First, the evalua-
tion criteria should be determined. The specifications, such as constraints for attributes,
can be used as the evaluation criteria. The evaluation criteria are evaluated one by one
until all the criteria are satisfied. If there is not enough information for evaluation, opera-
tions, e.g., to obtain more information from further development or to generate an aspect
model, are needed. The later is done by the aspect model generator and we can use exter-
nal application systems (such as a geometric modeling system) for evaluation. After the
evaluation, we know whether the suggestion is good or not.

(5) Conclusion.

If the result of evaluation is unsatisfactory, unsuitable suggestions and relevant infor-
mation are removed from the database by using ATMS. If satisfactory, we perform a com-
parison among these suggestions. If we have no suggestion, the problem should be
focused again, i.e., we must go back to the suggestion subprocess or start a new design
cycle from the awareness-of-problem subprocess.

(6) Contradiction Resolution.

Unsatisfactory results of evaluation can be regarded as contradlctlons of knowledge.
These contradictions can be resolved by predicate cucumscnpuon in which we calculate
unifications for the abnormal predicates in the condition part of rules. After circumscrip-
tion, we should check whether the problem can be concluded again. If the problem cannot
be concluded or the contradiction cannot be solved, it is considered that the suggestion is
not suitable, and the problem should be focused again. The suggestion should also be
removed from the database.

4.3. Representation of Design Objects

Design objects are described by objects, facts, and functions written in IDDL (Tomiyama,
1989; Tomiyama, Xue, and Ishida, 1991). Objects are instantiated from prototypes which
have standard descriptions about entities and physical phenomena. There are two kinds of
information in a prototype. Qualitative information is described by a process which con-
sists of both the premise and the physical phenomenon that influences on the system.
Quantitative information is described by attributes and functions over these attributes.

+ We use a circumscription algorithm proposed by (Nakagawa and Mori, 1987). They developed an
algorithm for computing circumscription (Lifschitz, 1985). For technical details, refer to (Takeda,
Veerkamp, Tomiyama, and Yoshikawa, 1990).

180

Prototypes are collected as physical features and, as described in Section 3.1., currently we
are building a large physical feature knowledge base. The instantiation of an object from a
prototype is performed by the model builder. A fact describes a property or a relationship
between objects. Facts are described in predicates which are suitable for logical reasoning.
Design specifications P and design solutions D are described in facts.

4.4. IIICAD System Implementation

Currently we are developing a prototype system of IIICAD in Smalltalk-80" (Goldberg and
Robson, 1983).

ICAD World Graph 5 July 1991
wa1 1112 1

w1—w2——W3< P 1072

w0 < waz — w5 w7 — wé — wo —JEOSTH 98~_'/, . .-43
a1l o w12 - w3l —J1¢. - w15 - w16 - w17 - wi8 - w19 - w20 7 8 5

Objact Level Knowledge Base Erowsnrl Prototype Browser|

Bearing

p{ GuideParts
QUANLITATIVE INFORMATION:

) P X
manyGaarsDaescriptiory ConnectionPart

proportionDescription | DivingCloth [

scaleDescription GeometricPrimit|

a0 e If:‘”“"’” S— i“[’f’Pth“’fF”P“?“ Action Level Knowledge Base Browserl
gearPairDescription iscenario content
BEGIN R R toplevelScenario
IF gearPalr(X,Y) THEN rotatlonPair(X,Y), :g:sgxer\(;l’oﬁ;ealgg:wadlcc “Top lavel operation*
IF gearPair(X,Y) THEN ~samaDirection(X,Y), aspactToAspact@anary BEGIN)
Dasign Browser[,Y) THEN gear(X) & gear(Y), conclusion IFT IHEN use.(radds.peclficanon),
" n E%s 655800, "Add spacification”
action level inferance it has the same O |F T THEN use(problemAwareness),
ITop level opnrarionl suggestion list “Try to set a problem"
(1)Add specification MENU > 5 IF problem(X) THEN use(suggestion),
2 it has the same ral “Try to make suggestion”
()T to make evaluation suggestion list ;’; IF suggestion(X) THEN use(dev"elopmen(),
(6)Try to make conclusion MENU > 6 5 “Try to maka development
(6)Make aspect model from metamodel generate aspect from X IF suggestion(X) THEN use(evaluation),
(7)Inspect intagration of aspect modals metamodel iod “Try to make evaluation”
(B)Ge"em‘e(;:ﬂ:zse:;or;‘sgf‘rggfs::i:\e'"a' modeler] MENU > 7 IF suggastion(X) THEN usa(conclusion),
()|D)Accass to datubasag inspect thae consistancy |- "Try to make conclusion®
(11)END of aspect models -1 IF contradiction(X) THEN
MENU > 8 usae(contradictionRasolution),
generate an aspect "Try to solve contradiction”
i ; RERRRRRRSY Tty model for external IF suggestion(X) & metamodel(X)
ring:5454 prototypeN Qear : THEN do(mataToAspectGanaration),
Z:::}ﬂgig?gg systemName: MENU > 9 "Make aspect model from metamodel"
natworkl dise! | gear:16252 make another reasoning IF suggestion(X) & metamodel(X)
T selectoroT ar - aur!buteName: 2 MENU > 10 THEN do{cons&stnlncylnspactuun),)
‘objactBase. ... | g:ﬁgﬁgﬂgr-nss attributeValue: 40 data basa oparation "Inspect integration of aspect models
factBase indictor:15:§49 . MENU > 11 IF suggestion(X) & metamodel(X)
instantiatedScen) attributeName: m to finish action level THEN use(extarnalModelarGanaeration),
instantiatedAule s 7 attributevalue: 2 reasoning “Generate an aspect model for
" | external modeler”

Figure 15: A Hardcopy of the IIICAD System

Figure 15 shows a hardcopy of this prototype system. In the IIICAD system, Design
Browser is the environment to perform a design work. The action level inference system
gives the possible operations with a menu by using action level scenarios. Then by per-
forming the operations selected by the user, object level scenarios are selected and used to

1 Smalltalk-80 is a Registered Trade Mark of Xerox Corp.

181

evolve the design object.

4.5. An Example

This section illustrates an example about how design is performed in the IIICAD system.
The knowledge used in this example comes from protocol data obtained in a design experi-
ment. The task is to design a weighing scale. Figure 16 shows the protocol data about
this task and Figure 17 shows the formalized knowledge written in production rules. The
rules are described in several scenarios and used when needed. For the convenience of
explanation, each rule is labeled with a rule number.

(1) What mechanism does a standard scale use?

(2) It measures the displacement caused by weight like this (Figure A).
(3) So we should use a spring.

(4) We can also use a spring this way (Figure B).

(5) If we use arack and pinion (Figure C), we can measure the weight,
because the displacement is in proportion to the weight.

(6) As it translates 100kg of the weight to Smm of the displacement,

it is impossible to realize it with this mechanism.

(7) If we do not mind the accuracy, it is possible to use many gears .
(8) But we cannot see the indictor upward.

(9) The indictor is difficult to see either.

(10) The indictor in a standard scale is easy to see.

(11) If the indictor can be seen upward, it is easy to see.

(12) How about using a helical gear?

(B)

Figure 16: The Design Experiment Protocol Data

Figure 18 shows the design specifications. The specifications are described in world
w0. By performing abduction three times with rule (1), rule (2-1) and rule (2-2), the
design object is evolved to world w3 (see Fig. 15). This world can be developed to world
w4l or world w42 separately by applying rule (3) or rule (4). We find that the mechan-
ism described in world w42 (see Fig. 16 (B)) is easier to realize than the mechanism
described in world w4/ (see Fig. 16 (A)), we select world w42 to continue our design. In
world w6, there is a contradiction caused by rule (2-2) and rule (6). Although this con-
tradiction can be solved by circumscription, this requires a revision of the specifications
that we do not want to do. We come back to world w5 and continue our design work by
adding a gear box. In world w/0, another contradiction caused by rule (10) and rule (1) is
found. This time we solve the contradiction by circumscription (Fig. 19). After the

182

(1) IF weight(W) & canMeasure(S,W) & support(S,W) THEN scale(S),
(2-1) IF displacement(D) & indictor(I) & has(S,I) & weight(W) & translate(S,W,D)
THEN canMeasure(S,W),
(2-2) IF isInProportion(S,W,D) & weight(W) & displacement(D)
THEN translate(S,W,D),
(3) IF spring(SP) & push(S,SP) & has(S,SP) & weight(W) THEN support(S,W),
(4) IF spring(SP) & pull(S,SP) & has(S,SP) & weight(W) THEN support(S,W),
(5) IF rackAndPin(RP) & has(S,RP) & weight(W) & displacement(D)
THEN isInProportion(S,W,D),
(6) IF isInProportion(S,W,D) & weight(W) & displacement(D)
& >(maxValue[W]/maxValue[D],10) THEN ~translate(S,W,D),
(7) IF isInproportion(S,W,D) & weight(W) & displacement(D)
& >(maxValue[W]/maxValue[D],10) & manyGears(MG)
& hasManyGears(S) THEN translate(S,W,D), .
(8) IF manyGears(MG) & hasManyGears(S) THEN ~hasUpwardIndictor(S),
(9) IF ~hasUpwardIndictor(S) THEN ~easyToSee(S),
(10) IF ~easyToSee(S) THEN ~scale(S),
(11) IF hasUpwardIndictor(S) THEN easyToSee(S),
(12) IF hasManyGears(S) & helicalGear(HG) & has(S,HG)
THEN hasUpwardIndictor(S),

Figure 17: Formalized Knowledge

i
scale(scl)
=(maxSupportWeight[sc1],100)
=(maxDisplacement[sc1],5)

Figure 18: Design Specifications

circumscription, rule (1) is changed. Because of the revision of the knowledge, the fact
scale(scl) cannot be concluded again. So it is focused as a new problem to be solved.
We come back to the world w0 to perform the design from almost the very beginning.
This time, because we have some experience about the design of the scale, we can evolve
the design object smoothly. Also by using a helical gear, it is possible to see the indictor
of the scale upward. Figure 20 shows part of the database in world w20.

In the design of the gear box, for some reason, a gear pair is used. The related shafts
and bearings are also generated. All these data construct a primary model shown in Fig. 8.
Then the qualitative reasoning system reasons out all possible behaviors of the design
object and build a network of concepts from the primary model (Fig. 9). In the evaluation
stage, because we want to evaluate the design object from various points of view, several
aspect models are generated. The metamodel describes the relationships among these data

183

(1) IF weight(W) & canMeasure(S,W) & support(S,W) THEN scale(S),
(10) IF ~easyToSee(S) THEN ~scale(S),

(a) Two Rules with a Contradiction

(1') IF weight(W) & canMeasure(S,W) & support(S,W) & ~abl THEN scale(S),
(10) IF ~easyToSee(S) & ~ab2 THEN ~scale(S),

(b) Adding Abnormal Predicates to Rules
(priority: ab2 > abl)
abl = ~easyToSee(S)
ab2 = false
(c) Solutions of Circumscription
(1") IF weight(W) & canMeasure(S,W) & support(S,W) & easyToSee(S)
THEN scale(S),
(10" IF ~easyToSee(S) THEN ~scale(S),

(d) Modified Rules with the Solution of Circumscription

Figure 19: Contradiction Resolution by Circumscription

scale(scl), easyToSee(scl), weight(weight:2546),
canMeasure(sc1,weight:2546), support(scl,weight:2546),
displacement(displacement:11377),

translate(sc 1,weight:2546,displacement:11377),
isInProportion(sc1,weight:2546,displacement:11377),
spring(spring:13414), pull(sc1,spring:13414),

rack AndPin(rackAndPin:5480),manyGears(manyGears:2599),
hasManyGears(sc1), hasUpwardIndictor(sc1),
helicalGear(helicalGear:1155), has(sc1,helicalGear:1155),
twoGearsMechanism(twoGearsMechanism: 13994), gear(gear:9600),
gear(gear:16252), gearPair(gear:9600,gear:16252),
~sameDirection(gear:9600,gear:16252),

Figure 20: Part of the Database in a World

in order to keep the consistency of different aspect models. Figure 21 shows part of the
data in the metamodel mechanism concerned about a gear pair.

184

Metamodel relations
d[r1] d[r2) Z[r1] Z[r2] metamodel
dir1}=m[r1]*z[r1]
i d[r2]=m[r2]*z[r2]
geometric model
m{r1] m[r2)] d[r1]=rr1]*2
d[r2]=r[r2]*2
distance[r1,r2]=(d[r1]+d[r2])/2
kinematic model
ifr1]=n[r2)/n[r1]
i[r2]=n[r1)/n[r2]
ifr1]=2[r1)/z[r2]
i[r2)=2[r2)/z[r1]
ifr11=1/[r2]

O O

m[ri] m[r2]

distance[r1,r2]

geometric manufacture kinematic $,dmodu|e
model model model O : lqmeter
data r: radius
\r relation z: teeth number
n: rotation number
-+—» same data per minite

Figure 21: The Metamodel for a Gear

5. CONCLUSIONS

This paper described a preliminary report about a project to develop a third generation
intelligent CAD system, called Intelligent Integrated Interactive CAD, currently conducted
at the University of Tokyo. Since design knowledge is considered extremely huge and
complex, we put an emphasis on theoretical considerations. This resulted in new tech-
niques for representing design process knowledge, a new framework for representing
design object knowledge based on qualitative physics, and as a whole integrated use of
design knowledge.

Our results are summarized as follows.

(1) The computable design process model, which is based on the cognitive design process
model derived from design experiments, is useful to describe design process
knowledge.

(2) A design object should be evaluated from various points of view. The metamodel
mechanism was developed to integrate these different aspect models and is used as a
design object handling framework for IIICAD. It is based on qualitative descriptions
about the design object, i.e., physical features, and represents knowledge about the
physical world.

(3) The metamodel mechanism realizes the evolutionary aspect of design which is also a
result of theoretical work on design processes. A prototype of IIICAD is developed
and it describes two types of design process knowledge, i.e., action level knowledge
and object level knowledge. The metamodel mechanism realizes object level

185

operations.

Future work includes the development of an intelligent user interface, an automatic
design knowledge acquisition mechanism, and a large ontological knowledge base.

ACKNOWLEDGEMENT

We would like to thank students of Yoshikawa-Tomiyama Laboratory of the Department of
Precision Machinery Engineering, Faculty of Engineering, the University of Tokyo, for
their help and constructive comments to this study.

REFERENCES

(Bobrow, 1985)
D.G. Bobrow (ed.), Qualitative Reasoning about Physical Systems, MIT Press,
Cambridge, MA, USA, 1985.

(Brown and Chandrasekaran, 1985)
D.C. Brown and B. Chandrasekaran, ‘‘Expert Systems for a Class of Mechanical
Design Activity’’, in Knowledge Engineering in Computer-Aided Design, Proceedings
of the IFIP W.G. 5.2 Working Conference 1984 (Budpest), J.S. Gero (ed.), North-
Holland, Amsterdam, 1985, pp. 259-290.

(Cutkosky and Tenenbaum, 1990)
M.R. Cutkosky and J.M. Tenenbaum, ‘‘Research in Computational Design at
Stanford’’, Research in Engineering Design, 2(1), 1990, pp. 53-59.

(Dixon and Cunningham, 1989)
JR. Dixon and J.J. Cunningham, ‘‘Research in Design with Features”’, in Intelligent
CAD, I, H. Yoshikawa and D.C. Gossard (eds.), North-Holland, Amsterdam, 1989, pp.
137-148.

(Fann, 1970)
K.T. Fann, Peirce’s Theory of Abduction, Martinus Nijhoff, The Hague, The
Netherlands, 1970.

(Forbus, 1984) :
K.D. Forbus, ‘‘Qualitative Process Theory”, Artificial Intelligence, 24(3), North-
Holland, 1984, pp. 85-168.

(Gero, 1987)
1.S. Gero (ed.), Expert Systems in Computer-Aided Design, Proceedings of the IFIP
W.G. 5.2 Working Conference 1987 (Sydney), North-Holland, Amsterdam, 1987.

(Goldberg and Robson, 1983)
A. Goldberg and D. Robson, ‘‘Smalltalk-80: The Language and its Implementation’’,
Addison-Wesley, Reading, MA, USA, 1983.

(Hayes, 1985)
P.J. Hayes, ‘‘Naive Physics Manifesto I: Ontology for Liquids’’, in Formal Theories
of the Commonsense World, J. Hobbs and R. Moore (eds.), Ablex Publishing, Co,
Norwood, New Jersey, 1985, pp. 71-107.

(Inui and Kimura, 1990)
M. Inui and F. Kimura, ‘Representation and Manipulation of Design and

186

Manufacturing Processes by Data Dependency’’, in Intelligent CAD, II, H. Yoshikawa
and T. Holden (eds.), North-Holland, Amsterdam, 1990, pp. 183-201.

(Johnson-Laird, 1983)
P.N. Johnson-Laird, Mental Models, Cambridge University Press, Cambridge, UK,
1983.

(Kiriyama, Tomiyama, and Yoshikawa, 1990)
T. Kiriyama, T. Tomiyama, and H. Yoshikawa, ‘‘Qualitative Reasoning and
Conceptual Design with Physical Features’’, in Proceedings of the 4th International
Workshop on Qualitative Physics, Lugano, Switzerland, 1990, pp. 153-160.

(Kiriyama, Yamamoto, Tomiyama, and Yoshikawa, 1989)
T. Kiriyama, F. Yamamoto, T. Tomiyama, and H. Yoshikawa, ‘‘Metamodel: An
Integrated Modeling Framework for Intelligent CAD”’, in Artificial Intelligence in
Design, J.S. Gero (ed.), Computational Mechanics Publications, Southampton, Boston,
1989, pp. 429-449.

(de Kleer, 1986)
J. de Kleer, ‘‘An Assumption-based TMS”’, Artificial Intelligence, 28, 1986, pp. 127-
162.
(Lenat and Guha, 1989)
D.B. Lenat and R.V. Guha, Building Large Knowledge-base Systems: Representation
and Inference in the Cyc Project, Addison-Wesley, Reading, MA, USA, 1989.
(Lifschitz, 1985)
V. Lifschitz, ‘‘Computing Circumscription’’, in Proceedings of Ninth International
Joint Conference on Artificial Intelligence, Los Angles, CA, 1985, pp. 121-127.

(McCarthy, 1980)
J. McCarthy, ‘‘Circumscription — A Form of Non-Monotonic Reasoning’’, Artificial
Intelligence, 13, 1980, pp. 27-39.

(Nakagawa and Mori, 1987)
H. Nakagawa and T. Mori, ‘‘Computable Circumscription in Logic Programming’’,
Transactions of Information Processing Society of Japan, 28(4), pp. 1987, 330-338, in
Japanese.

(Suzuki, Ando, and Kimura, 1990)
H. Suzuki, H. Ando, and F. Kimura, ‘‘Synthesizing Product Shapes with Geometric
Design Constraints and Reasoning’’, in Intelligent CAD, II, H. Yoshikawa and T.
Holden (eds.), North-Holland, Amsterdam, 1990, pp. 309-324.

(Takeda, Tomiyama, and Yoshikawa, 1990)
H. Takeda, T. Tomiyama and H. Yoshikawa, ‘‘Logical Formalization of Design
Processes for Intelligent CAD Systems’’, in Intelligent CAD, 1I, H. Yoshikawa and T.
Holden (eds.), North-Holland, Amsterdam, 1990, pp. 325-336.

(Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990)
H. Takeda, P.J. Veerkamp, T. Tomiyama, and H. Yoshikawa, ‘‘Modeling Design
Processes’’, in Al Magazine, 11(4), 1990, pp. 37-48.

(Tomiyama, 1989)
T. Tomiyama, ‘‘Object Oriented Programming Paradigm for Intelligent CAD

187

Systems’’, in Intelligent CAD Systems II: Implementational Issues, V. Akman, P.J.W.
ten Hagen, and P.J. Veerkamp (eds.), Springer-Verlag, Berlin, 1989, pp. 3-16.

(Tomiyama and ten Hagen, 1987)
T. Tomiyama and P.J.W. ten Hagen, ‘‘The Concept of Intelligent Integrated
Interactive CAD Systems’’, CWI Report No. CS-R8717, Centre for Mathematics and
Computer Science, Amsterdam, 1987.

(Tomiyama, Xue, and Ishida, 1991)
T. Tomiyama, D. Xue, and Y. Ishida, ‘‘An Experience with Developing a Design
Knowledge Representation Language’, in [Intelligent CAD Systems IlI: Practical
Experience and Evaluation, P.JW. ten Hagen and P.J. Veerkamp (eds.), Springer-
Verlag, Berlin, Forthcoming.

(Tomiyama and Yoshikawa, 1987)
T. Tomiyama and H. Yoshikawa, ‘‘Extended General Design Theory’’, in Design
Theory for CAD, Proceedings of the IFIP Working Group 5.2 Working Conference
1985 (Tokyo), H. Yoshikawa and E.A. Warman (eds.), North-Holland, Amsterdam,
1987, pp. 95-130.

(Umeda, Takeda, Tomiyama, and Yoshikawa, 1990)
Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa, ‘‘Function, Behaviour, and
Structure”’, in Applications of Artificial Intelligence in Engineering V, Vol 1: Design,
Proceedings of the Fifth International Conference, Boston, USA, J.S. Gero (ed.),
Springer-Verlag, Berlin, 1990, pp. 177-193.

(Veerkamp, 1989)
P.J. Veerkamp, ‘‘Multiple Worlds in an Intelligent CAD System’’, in Intelligent CAD,
I, H. Yoshikawa and D.C. Gossard (eds.), North-Holland, Amsterdam, 1989, pp. 77-
88.

(Veth, 1987)
B. Veth, ‘‘An Integrated Data Description Language for Coding Design Knowledge’’,
in Intelligent CAD Systems I: Theoretical and Methodological Aspects, P.J.W. ten
Hagen and T. Tomiyama (eds.), Springer-Verlag, Berlin, 1987, pp. 295-313.

(Weld and de Kleer, 1990)
D.S. Weld and J. de Kleer (eds.), Readings in Qualitative Reasoning about Physical
Systems, Morgan-Kaufmann Publishers, Inc., San Mateo, CA, 1990.

(Yoshikawa, 1981)
H. Yoshikawa, ‘‘General Design Theory and a CAD System’’, in Man-Machine
Communication in CAD/CAM, Proceedings of the IFIP Working Group 5.2 Working
Conference 1980 (Tokyo), T. Sata and E.A. Warman (eds.), North-Holland,
Amsterdam, 1981, pp. 241-253.

189

DISCUSSION:
INTELLIGENT INTEGRATED INTERACTIVE CAD: A PRELIMINARY REPORT

SEVENLER: I was very excited to read the proceedings of this group in 1980. I remember
reading the papers of Professors Yoshikawa and Tomiyama. Now after about 10 years, the
title of this paper is still “A Preliminary Report”. When do you think you will have com-
mercially useful results?

XUE: It is very difficult to say when Intelligent CAD can be used for commercial uses, but I
think that the concept of Intelligent CAD is very important. About 30 years ago the con-
cept of CAD was proposed, and they said they could do design in the near future. Then, a
long time passed but there was no improvement. So there was a lot of criticism about
CAD at that time.

Now we can’t say when Intelligent CAD will be available for commercial use, but I think
Intelligent CAD is very important and it will be used commercially in the near future.

SEVENLER: The examples I see in this conference are still very simple. I remember Dave
Brown’s work on air cylinder design years ago; now it is relief valve design! You are right
that we need lots of time, but is there a plan so that progress we have made in the last 10
years and progress we will make in the next 10 years can head towards some results which
would be commercially useful?

BIJL: Perhaps we should address this in the general discussion session.

NIELSEN: Idon’t get a feeling of how bounded your problem is. It seems large. 1 was won-
dering if you could tell me what domain of designs or design processes this is restricted
to?

XUE: This IIICAD system proposed a framework to organize the information of the design

object and the design processes. So it is just a framework. What kind of problem this sys-
tem can solve depends on what kind of knowledge we describe.

NIELSEN: Could you give me an example of something you couldn’t do with this framework
and something you might design?

XUE: For example, I can show you the design of a scale. We have a knowledge base for that.
Maybe it is a simple example, but at this stage, we just want to show how the Intelligent
CAD system should be constructed.

VELTKAMP: | thought you were already working on incorporating qualitative physics into the
IIICAD system. Did you make any progress?

XUE: Yes. The qualitative physics in this system is used to describe the ontological knowl-
edge, the deep knowledge which is the knowledge about the physical world.

First we describe the design process knowledge in the scenarios. A scenario is a kind of

190

set of production rules. By using the production rules, we get a primary model. We can
use the qualitative physics to explain this model, such as to generate a metamodel. It is a
kind of concept network used to evaluate the original idea.

VELTKAMP: Were you setting up large knowledge bases with physical features?

XUE: Yes. At our laboratory, we are now building up a large knowledge base. It is based on
physical features. We have built about 2000 physical features.

VELTKAMP: Can you use that already? Do you have results?
XUE: We have some problems that should be solved in the near future.

BROWN: I like the idea of building frameworks. I think it will raise many interesting ques-
tions. In your framework, how much of the design process is done automatically and how
much is done by the person? For example, when decomposing functions to sub functions
it wasn’t clear whether the system provides suggestions.

XUE: As a matter of fact, we have several methods described in the action level knowledge
base to make a suggestion, that is, action level scenarios. They tell that there are several
ways to make our suggestions, such as abduction, a kind of backward reasoning, or by the
FBS Modeler.

It depends on how the user uses it. If the problem can be solved by the object level scenar-
ios, we use them. If it can be solved by the FBS Modeler, then we use it. We have several
ways to make a suggestion to one program.

BROWN: But does the user have to decide which of these techniques to pick?
XUE: Yes.

GOEL: I am a little concerned about your use of the term “abduction”. Abduction is a kind of
inference to the best explanation. My understanding is that it is connected with the idea of
forming a reasonable, a good, or best explanation for some data set. But you seem to be
equating abduction with backward reasoning. That may well be right, but I am just a little
concerned about that.

XUE: There is a lot of other work concerned with abduction in our laboratory. Idon’t think
that abduction can be performed only by backward reasoning. Backward reasoning can be
used to perform abduction; it’s the simplest way.

GOEL: But backward reasoning is not identical to abduction. Not all backward reasoning is
necessarily abductive.

Moving to the point that Eric Nielsen raised: would it be fair to say that one way of char-
acterizing the class of domains to which your theory is applicable is the domains in which
the types of knowledge you are assuming are in fact available?

For instance, you are assuming that you have some function/behavior/structure model
available so that you can connect function to behavior and behavior to structure.

But it is not clear that such models are in fact available in all design domains. One design
domain that comes to mind in which such models may be hard to find is architectural
design. It is not clear to me that for architectural design such global function/behavior/

191

structure models are available.
Would that be one way of characterizing the class of domains to which your theory might
be applicable?

XUE: Yes. It gives a framework for how design processes and objects can be organized by the
system. As to the special aspects, such as architecture design, mechanical design or elec-
tronic design, we must consider specific properties of this design. So it depends on how
you build your knowledge base.

MacCALLUM: I am interested in the methodology you are proposing for maintaining consis-
tency among different aspects of the model. Do you use a truth maintenance system?

XUE: Yes.

MacCALLUM: Is it domain dependent or domain independent?
XUE: Domain independent.

MacCALLUM: What is it that controls its activation? What is it that makes the truth mainte-
nance system work? Is it any change, or a group of changes, or what?

XUE: In our system, as a matter of fact, there are two ATMS. One is in the primary model and
one is in the metamodel. The primary model is built up by the inference of the design pro-
cess handling system. The suggestions can be considered as assumptions in the ATMS. So
when we perform the operation of abduction, we get a suggestion which can be considered
as an assumption in the ATMS. So the other data that are derived from the assumptions
have relationships with the assumptions.

So if a contradiction occurs, we can find out whether the assumptions are contradicted.
We can remove part of the assumptions in order to keep the integration of the data.

FALTINGS: The examples you described in your paper are mechanisms. In mechanisms one
important aspect is that of geometry. Parts interact by the way they are arranged in space.
When you deal with such interactions, the relationship between functional or behavioral
and physical features can become much more complex than what you seem to allow in
your models.

In cases where you have spatial interaction, the relationship between the functional and
behavioral features and the physical features of your artifact is not really a mapping, one
to one, but can be a very complicated relationship involving non-monotonic dependencies.
I think in your CAD system you would have difficulty handling that. Do you have an
ideas to extend it?

XUE: At this stage, we just have some relationship to the function and behaviors. Then we
can decompose the functions to several sub functions, and then we can also realize the
functions by the physical features. But how to select physical features is a problem.

KANNAPAN: Figure 4 has action level inference and object level inference. You described
knowledge of actions. What’s going on in the top box, the Ka, C and O?

XUE: The “Ka” is the action level knowledge to describe the general knowledge on the design
actions. “Ko” is the object level knowledge to describe the relationships between the

192

design objects and properties of the design objects.

We added a design specification as P which is considered as a “problem”. Then because
the action level design process knowledge described the relationships between the status
of the database and possible operations, this inference gives users the possible operations.

GRABOWSKI: Could you give an example for general knowledge?
KANNAPAN: Specifically, what is K? What is C?

XUE: “C” is the condition. Itis the condition of the object level database. And “O” is the
operation to the object level database.

For example, this is an action level scenario used to describe action level knowledge. First
all of the rules should be matched, and then the successful rules can be shown by a menu
to the user. If we have a suggestion, then this rule can succeed. Then we can make a
development or an evaluation or a conclusion with it.

So we then select one of these operations to perform the design. The operations can be the
selections of the object level scenarios or the object level inference such as abduction,
deduction, or circumscription.

