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Abstract

To build design knowledge bases for intelligent CAD systems, systematization of design
knowledge itself is needed. Five processes of systematization were identified, i.e., setting up a
view, articulation, codification, crystallization, and reusing and sharing. This paper illustrates
our research effort towards design knowledge systematization, including building physical fea-
ture database, function modeling, design process formalization, and design knowledge
analysis.
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1. INTRODUCTION

Developing intelligent computer aided design systems (ICAD) is crucial within a future ad-
vanced computer integrated manufacturing environment [1-7]. There is an emphasis on the use
of advanced knowledge processing techniques to incorporate more domain knowledge and in-
telligence that are missing from conventional CAD. Despite these efforts, there seems to exist
no such truly intelligent CAD developed yet, perhaps because design knowledge is too huge
and complex to be organized and dealt with by existing knowledge representation techniques
[8].

A considerable body of current Al research centers on the approach of very large-scale
knowledge bases (VLKB). An example is the Cyc Project conducted at MCC [9]. The KIF
Project advocates the idea of knowledge standard for exchanging knowledge [10]. These pro-
jects aim at building powerful Al systems, first by collecting a large number of knowledge
chunks from ontological, fundamental common knowledge to domain dependent specific
knowledge, and second by providing mechanisms for reusing and sharing knowledge [11].

ICAD as an intelligent system needs to be equipped with VLKB containing design knowl-
edge that is considered huge and complex. At the University of Tokyo, we have been working
on research to develop ICAD [12] and as its part we have been conducting various projects to
collect design knowledge. The most significant result of these knowledge collection projects is
that, if knowledge is systematized, the task boils down to a matter of actual collection. If not,
however, it is extremely difficult even to collect knowledge.

Conventional knowledge acquisition techniques mention only about acquiring techniques
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and do not discuss systematizing techniques. Consequently, expert systems constructed with
conventional techniques are not provided with systematically organized knowledge. This sug-
gests that their knowledge bases are scruffy, i.e., unorganized or unstructured, thus difficult to
maintain, and that generality of knowledge is lost. This certainly causes hard-fails of the system
and prevents it from reusing and sharing.

This paper discusses the concept of systematized design knowledge and illustrates its exam-
ples in the context of developing ICAD. To begin with, Chapter 2 discusses a general system-
atization process. Chapter 3 illustrates our effort to obtain systematized design knowledge to-
ward ICAD and demonstrates the usefulness of the systematization process described in
Chapter 2. Chapter 4 concludes the paper.

2. WHAT IS SYSTEMATIZED KNOWLEDGE?

We consider that systematization of knowledge has the following processes, viz., setting up
a view, articulation, codification, crystallization, and reusing and sharing of knowledge.
Science is an effort to achieve such systematized knowledge.

2.1. Classification of Knowledge

Generally speaking, knowledge has two forms, i.e., recognized knowledge and unrecog-
nized knowledge. Another dimension of knowledge is tacit knowledge and codified knowl-
edge. Tacit knowledge is a form of knowledge that is explicitly or implicitly recognized by
human and used for reasoning but very difficult to describe. Codified knowledge is a form of
knowledge that is described with symbols, figures, and so on.

Figure 1 depicts our viewpoint about these two dimensions. (Unrecognized and codified
knowledge is meaningless.) Textbook knowledge and information stored in a database are ex-
amples of recognized and codified knowledge. Scientific knowledge largely falls into this cate-
gory. So-called commonsense is a typical example of recognized but tacit knowledge.
Expertise and skill are mostly composed of unrecognized knowledge.

The primary goal of systematization of knowledge is to convert recognized and tacit knowl-
edge to recognized and codified knowledge. However, there can be various degrees of codifi-
cation. For instance, information stored in a database is structured and computable. Textbooks
can be machine-readable and has some structure, but might not be computable. Since our ulti-
mate goal is the development of ICAD, computable knowledge is, perhaps, the best form of
systematized knowledge. In this paper, as a working definition of systematization we discuss
conversions from recognized and tacit knowledge to (recognized and) codified, and preferably,
further to computable knowledge.
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2.2. Setting up a View

To convert recognized and tacit knowledge to codified, first we need to set up a view. This
can be best explained by how modeling works [13]. In science and engineering, a model is cre-
ated by observing a phenomenon based on a background theory (Figure 2). A kinematic model
is generated based on kinematics, using only the vocabulary and concepts of kinematics. In
this regard, modeling is a kind of filtering through observation, such that a generated model be-
comes complete as far as the theory is concerned.

There can be many different background theories applicable to a single phenomenon, each of
which resulting in a different model. For instance, a geometric model is created with only the
vocabulary and concepts of algebraic geometry, such as points, lines, vectors, and so on, while
a distortion model is generated from the concepts of strength of materials that has only a single
law (i.e., Hooke’s Law).

A background theory dictates general, conceptual relationships among relevant parameters
and entities. This suggests that a background theory can have different interpretations for an
identical phenomenon and that even a single background theory can generate different models
depending on interpretations.

Therefore, when converting tacit knowledge into codified knowledge, we need to have a
predefined set of concepts. This set is called a view and often associated with a well-defined
theory that describes relationships among those concepts and has well-defined interpretation.

2.3. Articulation

Once we set a view together with a background theory and its interpretation, we can identify
instances of concepts that belong to the view in the observed phenomenon. This process is ar-
ticulation in which unorganized instances of concepts are given representations chosen from the
vocabulary. Articulation is thus a process for recognizing the world and naming; knowledge
after articulation is recognized knowledge.

2.4. Codification

After articulation, we have a set of instances that were given representations. Since the pro-
cess of setting up a view introduces a background theory that defines relationships among these
instances, this set of instances has structure. In artificial intelligence, structure is often given by
entities and relationships among entities, and attributes of entities and relationships. The back-
ground theory defines the whole system of these entities, relationships, and attributes and gives
expressions to the structure.

We now have codified knowledge that is a collection of facts observed in the phenomenon.
A fact is is a (partial) account of the phenomenon within the theory. Rules obtained in a knowl-
edge acquisition process are examples of such codified knowledge.

2.5. Crystallization

Codification process generates only pieces of factual knowledge. This type of knowledge is
extremely useful when massively stored in a database system, though such knowledge may re-
sult in hard-fail [14]. A knowledge based system can hard-fail, when it encounters a situation
that is not described in the knowledge base. An approach to removing this limitation is either to
broaden the range that the knowledge base covers or to generalize the knowledge. Projects to
construct VLKB are examples of the former approach. The latter is achieved by two ways: one
is to use deeper knowledge [14] and the other is to use a general, abstract knowledge.

Crystallization is a process to generate general and abstract knowledge from purely factual
knowledge in an organized manner. Such general and abstract knowledge is called a theory.
This theory is different from the background theory initially used for setting up the view, articu-
lation, and codification in that it contains more domain-specific, object level descriptions.
Having such a theory, however, we can give better organization to the factual knowledge ob-
tained from the codification process, further improve the initial background theory, or even
make knowledge collection much easier. Figure 3 depicts the setting-up-a-view, articulation,
codification, and crystallization processes.
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An important lesson that we learnt from a project to build VLKB is that crystallization is in-
dispensable for organizing design knowledge that is huge and complex and for improving the
background theory. The background theory is often too general and tells almost nothing about
the object level. This can be improved by having an object level theory obtained from crystal-
lization. In other words, a brute force approach to collect knowledge eventually fails, because
collected knowledge chunks have almost no relationships among them and do not yield any
meaningful, interesting results besides initially expected. Even if the task is just to build a factu-
al database, knowledge collection must be done in a systematic and organized way. To do so, a
theory obtained as a result of crystallization is helpful.

2.6. Reusing and Sharing of Knowledge

To reuse and share knowledge, we need not only knowledge representation techniques but
also a common knowledge description format (knowledge standard) such as KIF. However,
KIF is almost all concerned about interchanging knowledge among different knowledge based
systems represented in logic. In this context, it does not deal with more semantical part of
knowledge, called ontology. On the other hand, the Cyc Projects pays more attention to stan-
dardization at terminological, taxonomical, and ontological levels.

Although here we do not elaborate this issue any further, we just point out that systematiza-
tion of knowledge cannot be accomplished without having such knowledge standard and that
any standard can serve as a useful basis in every process of systematization.

3. EXAMPLES OF SYSTEMATIZATION OF DESIGN KNOWLEDGE

3.1. Design Knowledge

In this chapter, we illustrate examples of systematized design knowledge. Figure 4 illustrates
the research agenda of our group towards systematization of design knowledge.

Design knowledge has two types, i.e., design process knowledge and design object knowl-
edge. There is a difference between them that design process knowledge is process knowl-
edge which describes how, whereas design object knowledge is largely fact knowledge which
describes what. In design, we need to build a goal from imprecise, incomplete, and sometimes
not consistent specifications. A design process begins with ambiguous or rough descriptions of
the design object and they will be gradually detailed. This indicates that a design process is a
typical ill-defined and ill-structured problem that needs a cognitive approach to observe and de-
scribe it. Perhaps primarily due to this fact, process knowledge has been long ignored in CAD
research and no serious scientific methods were applied.

3.2. Design Object Modeling

The triumph of geometric modeling also contributed to the ignorance of studying design pro-
cess knowledge. However, there still remains issues to be studied even for design object mod-
eling. First, the evolutionary nature of design processes influences much on the representation
and design objects cannot be given a fixed or rigid representation scheme. Second, in engineer-
ing design we need to deal with the physical world anyway. Knowledge about the physical
world must be incorporated into the system symbolically. Qualitative physics [15] is an ap-
proach to handling this type of knowledge. The symbolic (i.e., qualitative) nature of reasoning
in qualitative physics is useful to reason about behaviors from rough descriptions of the design
object that will be gradually detailed.

Qualitative physics has two roles, viz., to reason about dynamic behaviors of physical sys-
tems and to symbolically model their structure and behaviors. Given a set of environmental
conditions, one can set up an appropriate design object model and reason about what might
happen, that is, envision physical phenomena.

Knowledge of qualitative physics can also be used to manage multiple models in ICAD,
which is an integration issue. In mechanical design, a design object can be modeled from differ-
ent aspects, such as FEM analysis, kinematic analysis, and dynamic analysis. Differences
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among these models originate from the differences in their background theories (see Figure 2).
However, obviously the models are not independent from each other and models have relation-
ships accordingly. In a multiple modeling environment, these relationships must be maintained.
Suppose, for example, a kinematics model of a mechanism and its distortion model. Changing
motion in the kinematic model affects forces in the distortion model. This can be inferred in
such a way that, since acceleration of a solid object depends on force applied to it, changes in
acceleration in the kinematic model should lead to changes in force in the distortion model and,
as a result, bend must be recalculated. To find such relationships among models, we use
Qualitative Process Theory [17] and developed a new modeling framework called metamodel
[13, 18-20].

The metamodel mechanism has symbolic representation of concepts (i.e., physical parame-
ters and phenomena) used to represent the design object. It also has a knowledge base about re-
lationships among these physical concepts (see Figure 5). The designer describes the design
object as a combination of physical features that represent relationships between unit physical
phenomena and entities. A qualitative reasoner tries to figure out, first, if the given combination
of physical features performs the desired behaviors given as the specifications. Second, it gen-
erates necessary models for evaluation. The metamodel mechanism then prepares necessary
data for each of these modelers that might be, e.g., an FEM analysis system. When the model
is modified due to results of analysis, the metamodel mechanism propagates the change to other
models accordingly through the network about concepts (see Figure 6).

Developing the metamodel mechanism and its qualitative reasoning system corresponds to
the setting-up-a-view, articulation, and codification processes toward systematized design
knowledge.

metamode!

Q.diatortlon
shape
“rigidity ooecccensiiio4) Kinematic palr
I aspect models I{qunlllallvo) l
p force shape P kinematic pair
distortion longth accoleration
\ﬁgidny volume \velocﬂy

\ \ aspect moj 1el\)(uanmnllve) \\

\ ];\__\Q_

A -
ion model ] elric model i ic model
Figure 5. Metamodel mechanism. Figure 6. A conceptual network of metamodel.

3.3. Physical Feature Database Project

We started a project to build a large-scale physical feature database about engineering design
knowledge. This project of collecting physical features was aiming at intensifying codified
design knowledge. We chose three engineering domains as the source of knowledge, namely
kinematics, robotics, and classical physics, because (i) knowledge about these domains is fun-
damental for mechanical engineers, (ii) domain theories as background theories are already well
established, and therefore (iii) we thought we could systematically obtain descriptions of do-
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main knowledge from textbooks.

Figure 7 shows a screen copy of the interface of the knowledge base. The physical feature
shown in the figure is a planetary gear mechanism. We have collected some thousand of physi-
cal features. The physical features stored in the database are used for qualitative reasoning about
behaviors, suggesting alternative behaviors, and correlating aspect models in the metamodel
mechanism. In order to use the physical features for reasoning, they must be described on the
basis of the common vocabulary such as time, space, shape, and material, i.e., common ontol-
ogy.
However, our initial estimation was too naive. For instance, a collected feature could not be
used in other situations than originally described one, not because of discrepancy in the view-
points of the knowledge collectors but because of the lack of the more unified, ontological basis
than qualitative physics. In this respect, collecting naive knowledge about physical phenomena
and entities [21] is indispensable.
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Figure 7. Physical feature database.

3.4. Function Modeling

For modeling machines, our research includes development of representational scheme of
Sfunctions of a machine. Figure 8 shows our representational scheme named FBS (Function-
Behavior-State) diagram [22]. In an FBS diagram, a design object is represented with a func-
tional hierarchy constructed subjectively based on the designer’s intention and each subjective
function is represented with respect to objective behavior constrained by physical laws.

Figure 9 is a screen hardcopy of the FBS modeler that implements the FBS diagram. The
upper half of the network represents a functional hierarchy and the lower half represents struc-
ture and physical phenomena that embody the intended function. Using qualitative reasoning,
the system examines if the intended function can be achieved by the structure. In Figure 9,
functions represented with white nodes are justified by behaviors, whereas functions represent-
ed with black nodes are not justified by appropriate behaviors. Hatched nodes represent physi-
cal phenomena the designer did not anticipate.

Function modeling is an attempt to set up a view and to articulate yet-to-be-clarified function-
al knowledge. Codifying knowledge about functions within the framework of the FBS diagram
helps to build intelligent CAD systems that can be used in the conceptual design stage.
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3.5. Design Process Formalization

Since design studies are still in prescientific stage [23] and among other things design pro-
cesses are least studied, we had to take an empirical approach [24, 25]. We conducted desi gn
experiments to collect experimental data about design. A design experiment is a psychological
experiment in which the entire design session is recorded on video to obtain protocol data from
analysis of the records. We derived a cognitive model of design process from the results of
design experiments (see Figure 10).

We could observe that a design process was decomposed into small design cycles. A design
cycle has five processes, viz., awareness of the problem, suggestion of solution candidates, de-
velopment of each of candidates, evaluation of the result of development, and conclusion.
Protocol data obtained from design experiments could be translated into logical formulae.
Figure 11 shows logical formalization of design knowledge extracted from protocols in design-
ing a weighing machine.
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Figure 12 illustrates a computable design process model that formalizes design processes as
combinations of three types of reasoning, i.e., deduction, abduction, and circumscription [25].
Deduction is a process to derive facts from known facts. Abduction is a process to find possible
ways to obtain the desired result. Circumscription is a process to reform knowledge to resolve
contradiction within the knowledge base. Object level inference deals with facts about the
design object, whereas the action level inference guides the object level inferences. Based on
this design process model, we implemented Design Simulator (Figure 13) that traces back
design processes using design knowledge extracted from protocol analyses.

The cognitive and computable design process models are examples of codified and crystal-
lized design knowledge. Having such models, collecting and systematizing design knowledge
becomes easier, because they serve as a template for describing design process knowledge.

3.6. Analysis of Design Process Knowledge
We analyzed protocol data obtained from design experiments and found six categories of

design knowledge; i.e., knowledge about entities, functions, attributes, topologies, relation-
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ships, and manufacturing methods. Between these categories, there are eight primitive transi-
tions, which comprise design processes. The transitions are;

« from functions to entities

« from entities to functions

» from attributes to entities

» from entities to attributes

» from attributes to attributes

« from topologies to relationships

« from entities to manufacturing methods, and

» from manufacturing methods to attributes.
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Figure 14 depicts the six categories of design knowledge and the eight transitions among
them. This figure is a typical example of crystallized design knowledge, because these transi-
tions can be used as a template of design process knowledge when collecting design process
knowledge at the design object level. Obviously, such categorization makes easier to collect
design knowledge.

At this moment, however, we have not yet succeeded in building an integrated design pro-
cess knowledge theory clarifying the use of design process knowledge shown in Figure 14 and
the computable design process model. This is definitely a future research issue.

4. CONCLUSIONS

Building an intelligent system such as intelligent CAD is not achieved only by collecting
massive amount of knowledge; we need systematization of design knowledge even before we
start collecting knowledge. In this paper, we discussed systematization methods of design
knowledge that include such processes as setting up a view, articulation, codification, crystal-
lization, and reusing and sharing. We also illustrated our research effort corresponding to these
processes of systematization, such as developing the metamodel mechanism, building a physi-
cal feature database, function modeling, design process modeling, and analysis of design pro-
cess knowledge.

As a result of crystallization, we have theories that can give better organization and structure
to collected knowledge and can make the knowledge collection task much easier. Its good ex-
amples are the computable design process model and the framework of design process knowl-
edge at the object level shown in Figure 14. These can further simplify and make easier the
knowledge collection tasks; in this sense, systematization of design knowledge is a recursive
process in which better knowledge representation and acquisition techniques are pursued.

Currently, we are developing IIICAD (Intelligent, integrated, Interactive CAD) [12]. Design
knowledge collected through the research on systematization is represented and integrated in its
prototype.
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