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ABSTRACT

In this paper we propose a logical design process model that
has a good capability as the framework of intelligent CAD sys-
tems. This model adopts abduction, deduction, circumscription,
and meta-level inference for reasoning, and partial semantics and
possible worlds semantics for representation. It can represent the
important features of design processes, e.g., coupling of synthesis
and analysis is represented by a combination of abduction and de-
duction, the step-wise refinement by iteration of abduction and
deduction and multiworlds, and inconsistency handling by cir-
cumscription. Since design process models should be not only
well defined, but also computable and capable to explain human
design processes, we interpret the cognitive model of design pro-
cesses by the logical design process model, and also demonstrate
its computability by implementing a prototype of the design sim-
ulator which is based on this model.

Key words: design theory, artificial intelligence, design
process modeling.

1 Introduction

The concept of intelligent CAD systems has drawn the at-
tention of researchers in both the engineering and the Al fields.
Although there have been some proposals of design systems that
used AI techniques (for example, Dyer et al.[l], Murthy and
Addanki(2], Cagan and Agogino[3]) and they are successful in
solving some intellectual activities in design, there exists a wide
gap between these systems and the concept of intelligent CAD
systems, i.e, it is difficult to imagine an intelligent CAD system
as an extension or combination of these systems.

One of the most important features that intelligent CAD
systems should have is integration of subsystems, design models,
and design processes[4]. Such integration will be accomplished
only by a system that would be constructed with proper design
object and design process models. Although there are many stud-
ies on modeling of design objects(e.g., geometric modeling), only
a few studies have been done on modeling of design processes.
This paper, therefore, discusses modeling of design processes for
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developing intelligent CAD systems.

There are some requirements for design process models
which would contribute to intelligent CAD systems. First, the
design process model should be formally described, i.e., it should
be defined by some mathematical method. Second, since intelli-
gent CAD systems should be interactive with designers, the de-
sign process model is expected to be understandable to designers.
Furthermore it should be computable to have capability to be re-
alized in computer systems(5].

Here we adopt logic as the method to describe design pro-
cesses, and propose a logical design process model. In Section 2,
we discuss the requirements for logical representation of design
processes. In Section 3 we review logic as knowledge represen-
tation, and determine the logical framework to represent design
processes. In Section 4, we propose a logical inference model for
design processes that consists of abduction, deduction, circum-
scription, and meta-level inference. In Section 5, the logical de-
sign process model is compared with the cognitive design process
model, and discussed as to how the logical model can interpret
the cognitive model. In Section 6, we show a prototype system
called design simulator which is based on the logical design pro-
cess model in order to examine its computability. In Section 7
we discuss how the model satisfies the requirements listed in Sec-
tion 2 and compare it with related work. Section 8 concludes the
paper.

2 Requirements for Logical Representation
of Design

Since the purpose of the paper is to describe design pro-
cesses in the logical framework, we should clarify what we rep-
resent in logic. Although many factors are complexly related to
design, we use three factors which are prerequisite to describe de-
sign processes. These factors are required specifications, design
solutions (design objects), and knowledge.

Then we can list the following requirements of design pro-
cesses that we should represent with the logical model. These
requirements come from observation and cognitive analysis of de-




sign processes|[6][7].

1. Bidirectional processes. Design is not a one-way process,
because synthesis and analysis are mutually performed in design
processes. Except in some types of design such as routine de-
sign, the designer can not obtain the design solution straight-
forward from the given specifications only by designing in the
narrow sense, i.e., composing descriptions of the solution, but de-
signers should synthesize objects as well as analyze them in order
to examine what their synthesis would bring on. It seems that
two types of reasoning are used in design which have opposite
directions in reasoning to each other.

2. Step-wise and iterative processes. We can not obtain
design solutions at a stretch from the given specifications. The de-
signer details design objects gradually and finally reaches desired
descriptions of the solution[7]. Design is accomplished through
such step-wise refinement processes. Thus, there are many in-
termediate states for design solutions, and in each state some
progress should be performed. It means that reasoning is per-
formed iteratively in step-wise refinement processes.

3. Feasible solutions. In design, there seldom exists any sin-
gle or definite design solution that fulfills all the required speci-
fications, but some feasible solutions. Each of them is a possible
solution, but they may not satisfy all the specifications. Thus, so-
lutions of the design should be feasible and, furthermore, multiple
for a single set of specifications.

4. Two types of knowledge. There are two types of knowl-
edge in design — knowledge about how to design (e.g., knowledge
about design procedures and design rules), and knowledge about
properties and behaviors of objects. The difference lies in purpose
of their representation. The purpose of the former is to describe
knowledge as designers’ action or behavior, while the latter to
describe knowledge as what objects are or should be. It is a need
that both types of knowledge should be handled. v

5. Incompleteness of knowledge description. Since most
of knowledge used in design is vague, it is not easy to describe or
define it perfectly. We cannot assume that every piece of knowl-
edge has a perfect description. Nevertheless a designer can deal
with such incompleteness of knowledge description unconsciously
and consciously.

6. Uncertainness of available knowledge. Although it is
neither natural nor practical to assume that all knowledge is al-
ways ready to use, the range of knowledge that can be used in a
design is not clear. Except routine design, it is not known what
kind of knowledge should be used to accomplish design at the
beginning of design. It is determined during design processes.

7. Uncertainness of specifications. In many cases in design,
required specifications are not fully determined at the beginning
of design. Rather incomplete or vague specifications are gradually
added to or detailed during the deign processes.

8. Inconsistency in design. A designer is often confronted
with inconsistency in the design processes. But different from
inconsistency in logic, it does not mean that the effect of incon-
sistency is negative in every sense. Resolution or avoidance of
inconsistency often makes a new progress of design.

3 The Logical Foundation for Design

In this section, we discuss what framework is appropriate
to represent design processes in logic.

3.1 The Logical Foundation for Knowledge Representa- '

tion
“Deduction” is an inference in which consequences (logical
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theorems) are derived from given premises (logical axioms) intu-
itionally. For example, we can say that “q can be deduced from
pand p — ¢” 1. Tt can be represented symbolically as

p,p—gbkg

In general, we can represent the relation that formula can
be derived from a given set of formula as follows;

A+ B

where A represents a given set of logical formulae (axioms), and
B represents a set of logical formulae each of which can be derived
from A. In knowledge representation, axioms can be divided into
two, i.e., one corresponds to “knowledge” which are common to
all situations and the other to “facts” which vary in situations.
That is;

FUKFG (1)

where F, K, and G are sets of logical formulae, and represent
facts, knowledge, and derived facts respectively.

On the other hand, C. S. Peirce proposed another kind of
inference called abduction in which axioms are found which can
derive given consequences. Peirce introduced it as an ampliative
reasoning, while he regarded deduction as ezplicative or analyt-
ical reasoning. For example, when we have a logical formula ¢
to “explain”, and p — ¢ is included in axioms, p is a possible
solution for abduction. That is, if we assume ¢ and ¢ — p as
axioms, p is derivable from them. It does not mean that p is a
determined solution, but only that p is a candidate which may
be the solution, because this process is tracing back from conse-
quents to antecedents, i.e., it commits an error of the fallacy of
affirming the consequent.

In knowledge representation, we can use the same formula
(1) to formalize use of abduction, but should read it differently.
That is, F, K and G represent hypotheses which are used to
derive G, knowledge, and the given facts we want to derive re-
spectively. This is the framework of hypothesis reasoning (for ex-
ample, Poole[8]), and some methods to compute abduction have
been proposed.

These two approaches to use logic as knowledge representa-
tion are in contrast with each other, and we call the first one as
the deductive framework, the second one as the abductive frame-
work.

3.2 The Logical Framework for Design

It may seem natural to take the deductive framework to de-
scribe design processes in logic. In this approach, we can formalize
design as follows;

SUK F Ds

where S, K, and Ds are sets of formula that denote required
specifications, knowledge used in design, and design solutions,
respectively. Here solutions are derived from specifications and
knowledge as the results of deduction. In short, this approach
adopts the “design is deduction” paradigm.

Many works which explain design or design processes in
logic are based on this framework in principle. For example,
Treur[9], and Dietterich and Ullman[10] took this approach, and
we also took it in [6].

!In this paper we use A, V, —, and - for “and.” “or.” “implication.” and
“negation” in logic respectively. U. C and € stand for “union.” “subset™ and
“membership” in set theory respectively.



However, this “design as deduction” approach can not solve
most of the problems listed in Section 2.

There are two major problems for this approach, one is
about representation of design knowledge (Requirement 4), and
the other is about feasible solutions(Requirement 3).

Knowledge in this approach should be knowledge about de-
sign procedures or design rules (knowledge about how to design).
Since we adopt the “design is deduction” paradigm here, every
formula used in deduction should describe something to proceed
design. A typical example of this kind of knowledge is, “if there
is a specification S;, then use a design object D; as a candidate.”

Although it may be useful for routine design because we
may collect such kinds of knowledge, it is not appropriate to
more flexible and creative design in which knowledge about object
properties and behaviors plays an important role. We believe that
knowledge about object properties and behaviors is more primary
than knowledge about how to design. Designers can manage to
design new objects when they have knowledge only about their
properties and behaviors but no knowledge about how to design
them, while it is difficult for them to design new objects only with
knowledge about how to design.

In the deduction framework, although it is possible to ob-
tain multiple solutions, they can not be feasible solutions because
they should be satisfied with the given axioms, i.e., the required
specifications and knowledge.

Then we can use the second framework — the abductive
framework. In this case, specifications can be derived from design
solutions and knowledge.

DsUK + S.

Here again design is abduction with knowledge and specifications.

Coyne[11] and RESIDUE system[12] stand for this approach
for design formalization.

Then the problems for the deductive model can be solved.

Knowledge represented in this framework is knowledge
about objects themselves, i.e., knowledge about object proper-
ties and behaviors, because formulae in this framework should be
prepared to deduce properties and behaviors of objects from de-
scriptions of objects themselves. It is more desirable than knowl-
edge representation in the deductive framework, because, as we
mentioned above, knowledge about objects is prior to knowledge
about how to design.

Furthermore solutions the abductive inference can generate
are, by definition, not definite solutions but feasible solutions.

Therefore, we adopt the abductive framework as the frame-
work of logical formalizations of design.

Although this framework can already interpret some re-
quirements of design process models, many are left to be solved.
In the next section, we propose the inference model on this frame-
work that can solve the rest of the requirements.

4 The Logical Inference Model for Design
Processes

The inference model we propose is illustrated in Figure 1.
We define the design process model as a logical inference model.

Here there are two levels in the model, one is the object
level and the other is the action level. The object level contains
descriptions of design objects (design solution) Ds, knowledge
about objects Ko, and descriptions of object properties and be-
haviors P. P includes required specifications.
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Ko: Knowledge about objects

Figure 1: The logical design process model

The basic design process is interpreted by iteration of ab-
duction and deduction that evolve design objects and their prop-
erties and behaviors, and circumscription is invoked to resolve
inconsistency.

The action level contains knowledge about actions (knowl-
edge about how to design) Ka, and the meta-level inference is
performed to proceed design by specifying inferences in the ob-
ject level and operating directly the contents of Ds, Ko, and P.

Changing of design objects (Ds) is managed by the multi-
world mechanism based on a type of modal logic. Every state of
design objects in design processes corresponds to a possible world
in modal logic so as to manage multiple solutions and operations
to design processes themselves.

4.1 TIteration of Abduction and Deduction as the Basic

Process

We regard a design process as an evolutionary process, that
is, the design objects are refined in step-wise manner. We call
each state of step-wise refinement as a design state. In each state,
the following three types of descriptions hold; The first one is de-
scriptions of the current design solution. It consists of identifiers
of design objects which are components of the current design solu-
tion, and properties and relations which are necessary to identify
the objects. In the following discussion it is denoted by Ds. The
second one is descriptions of properties and behaviors of the cur-
rent design solution, P. It consists of all kinds of properties and
behaviors that the current design solution has. Required speci-
fications are included in P. The third one indicates knowledge
that is available at the current state, Ko. These descriptions are
kept consistent to satisfy the following formula;

DsUKo + P.

Given design knowledge Ko and the required properties P
as the specifications, the designer tries to find a candidate by ab-
duction, hence, the current descriptions of the design objects are
formed. Then deduction is performed to obtain all the proper-
ties of the current solution with respect to the current available
knowledge. It is performed (i) to see what properties the solution
has and (ii) to see whether the solution does not contradict with




the given specifications and knowledge. Then again abduction is
performed to evolve the solution more — new descriptions for the
next state are formed. If the solution does not satisfy the spec-
ifications or can not evolve any more, the designer either tries
an alternative solution or modifies the design knowledge and the
specifications.

This iteration of abduction and deduction continues until
the descriptions of the objects become fully detailed ones that are
suitable to hand the next process (e.g., manufacturing) or reach
a situation where no more evolutions are possible.

4.2 Circumscription for Resolution of Inconsistency

As mentioned in Section 2, inconsistency has not only neg-
ative effects in design but also positive ones.

Most cases of inconsistency in design does not mean that
knowledge has wrong information essentially, but that knowledge
is used in a wrong manner (knowledge is used beyond situations
it is expected to be used in). But it is not impossible to describe
all applicable situations in advance, because it is the nature of
knowledge in design that boundary of applicability is vague?.

Here we assume that inconsistency comes from such incom-
pleteness of the knowledge description. Then resolution of incon-
sistency is to find implicit descriptions of knowledge which restrict
applicability of knowledge. This process can be accomplished by
circumscription.

Circumscription is a type of commonsense reasoning and
has been developed to deal with ezceptions. In circumscription,
exceptions for given contexts can be determined by minimizing
logical extensions of the predicates which represent abnormality
with keeping the whole context consistent.

Here abnormality is the implicit description of each piece of
knowledge.

For example, consider the following two formula.

Rulel : spring(z) — is_in_proportion(z)

Rule2 : spring(z) A overload(z) — —is_in_proportion(z).

These formulae are inconsistent with each other. Then we can
rewrite these formulae as follows;

Rulel : spring(z) A ~aby(z) — is_in_proportion(z)

Rule? : spring(z)Aoverload(z)A—aby(z) — —is_in_proportion(z).

where ab;(z) represents the implicit description of each formula.
One of the results of circumscription of ab; is

aby(z) = spring(z) A —overload(z), aby(z) = false.

After substitution, we can obtain a modified formula of Rulel as
follows ( Rule2 is unchanged);

Rulel” : spring(z) A —overload(z) — is_in_proportion(z).
It is no more inconsistent with Rulel” and Rule2 even if
spring(z) and overload(z) are true.
In this context, ~overload(z) is a newly revealed condition
of Rule 1, and thus this formula is detailed during this process®.
By doing abduction with this modified knowledge, we can
obtain different results from before. Thus use of circumscription

2And the definitions of boundary will be infinite even if such definitions
exist[13].

3 Another problem is whether this modification is desirable, and it depends
on priority among formulae with respect to generality.
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not only solves inconsistency but also helps design to proceed
more by modifying knowledge.
4.3 Meta Level Inference for Actions

We defined the basic process as iteration of abduction and
deduction on descriptions of objects, knowledge about objects,
and descriptions of object properties and behaviors. We also in-
troduced circumscription to resolve inconsistency.

Although they explain what the designer can do with given
knowledge and specifications, they can not deal with change of
knowledge or specifications because such actions require change
of axioms or theorems of the logical system and therefore it is out
of a logic system.

In order to solve this problem, we introduce meta-level
inference architecture. Metal-level inference architectures for
reasoning are suggested by many researchers. For example,
Weyhrauch[14] proposed FOL which is a meta-level reasoning sys-
tem based on first-order logic. Usually the relation between ax-
joms and theorems in the object-level logical system corresponds
to the atomic formula in the meta-level logical system. In our ap-
proach, what the meta-level system treats as its atomic formula
is the relation among descriptions of objects, available knowledge
about objects, and descriptions of object properties and behaviors
in the object-level system. We can represent this as follows;

DsUKotyp, P &y, design(Ds, Ko, P).

where b, and ,, denote derivability in the object-level system
and in the meta-level system respectively.

The current condition of the three elements in the object
level systems is constantly reported to the meta-level system, and
the results of inference in the meta-level system is reflected to the
object-level system. The reflection is the change of the condition
of the object level system either specification of the next inference
or modification of the contents of the three elements in the object-
level system.

Knowledge about how to design can be described as formula
in the meta-level system. For example, a rule “if you are designing
a certain object g, you should use knowledge base K, can be
described as follows;

design(Ds, K, P) A g € Ds — design’(Ds, K U K, P)

We can thus describe knowledge like design rules and design pro-
cedures in this level.
4.4 Multiworlds for Representation of Changing

Each element of the object level system ( descriptions of
objects, available knowledge about objects, and descriptions of
object properties and behaviors) is changed dynamically by ei-
ther the object-level inference or the meta-level inference. We
introduce the multiworld mechanisms based on modal logic to
manage this changing.

Since a designer accumulates her or his decisions as the de-
sign solution in step-wise refinement processes, it is crucial to
distinguish what is already determined from what is not deter-
mined yet. It is suitable to represent such situations by partial
semantics. Therefore we can use data logic to represent them.
Data logic[15][16] is intuitionally a version of modal logic based
on partial semantics. There are three truth values, i.e., ¢, f, and u.
The third value can be interpreted as “undecided”. Among these
values, partial-order 3 can be defined where t Ju and f J u are
hold. In this logic, we can access the other possible worlds from
a certain possible world, if the value of every proportion in the



world is not lower than that in the original world with respect
to partial-order J. This means that the nezt world is more de-
termined one than the current world. The truth value u is thus
expected to fall into either tor f.

Since changing of descriptions of object properties and be-
haviors (logically it means a set of derivable formulae) is mono-
tonic, we can use possible worlds and accessibility to represent
design states and their relations. ’

In this formalization, if a designer obtains two different ob-
ject descriptions from a single solution, two possible worlds are
created as descendant of the current possible world. Revision and
retraction of the design solution means backtracking to the desir-
able world (the latest world which does not contradict with the
new object descriptions) and creating a new world as its descen-
dant.

5 Interpretation of the Cognitive Model by
the Logical Process Model

In the previous section, we explained the design process
model based on the logical framework. Here we compare this
model with the cognitive model which was obtained by observa-
tion of protocol data[6][7], and interpret the cognitive model with
the logical design process model.

We proposed the design cycle as a cognitive design process
model. We observed protocol data and picked up five basic pro-
cesses, i.e., awareness-of-problem, suggestion, development, eval-
uation, and conclusion subprocesses. Utterance in the protocol
data can be classified into these subprocesses. Since the sequence
of these subprocesses in this order appeared repeatedly, we called
it a design cycle. Basically a single design cycle solves one prob-
lem, but sometimes new problems that should be solved in other
design cycles are arisen in the suggestion and evaluation subpro-
cesses. '

The suggestion subprocess is a process where the designer
tries to find a feasible solution. This means that this subprocess
is to obtain Ds from P and Ko and it can be regarded as an
abduction process.

On the other hand, both the development and the evalu-
ation subprocesses are regarded as deduction. In these subpro-
cesses, the designer applies his/her knowledge to the solution and
obtains what is known about it at the current state. That is, these
two processes are to obtain P from Ds and Ko. The difference
between those two subprocesses lies in what kind of knowledge
is applied. The development subprocess uses knowledge to find
out what properties the design object has, while the evaluation
subprocess uses knowledge to obtain properties which are used
for comparison with other solutions and some evaluation scheme.

While the designer is developing or evaluating the design
solution, she or he sometimes encounters a difficulty about the
solution and defines a new problem in order to solve the original
problem. It is a jump from the development or evaluation sub-
process to the awareness-of-problem subprocess. We interpret it
as circumscription.

A difficulty is interpreted as inconsistency in logic. As
mentioned in Section 4, circumscription solves inconsistency.
And furthermore, as the result of circumscription, some pieces
of knowledge are modified. It sometimes makes a new prob-
lem to be solved. For example, consider the example we men-
tioned Subsection 4.2 again. Suppose {spring(z), overload(z)}
is hold now. If is_in_proportion(z) is included in the required
specifications, this state does not satisfy the specifications be-
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Figure 2: Inferences in the design cycle

cause the modified knowledge can not derive this property from
{spring(z), overload(z)} any more, whereas is_in_proportion(z)
is derivable from {spring(z), ~overload(z)}. If you want to make
isin_proportion(z) true, you have to make overload(z) false. It
can be accomplished by assuming it as the new object descrip-
tions or finding another formula to support it. Thus modification
of knowledge and successive execution of abduction and deduc-
tion can generate a new problem to be solved.

Except backing in to the awareness-of-problem subprocess
from the development and evaluation subprocesses, a design cycle
ends successfully and a new design cycle follows it. It is provided
by changing of available knowledge and determination to the facts
to be used in the next abduction. The former can be interpreted
by the meta-level inference because it can operate available knowl-
edge on the object level with meta-level knowledge. If knowledge
about design procedures are fully provided, we can interpret the
latter as the meta-level inference. But in most cases we can not
deal it in this framework because it is highly complicated human
activity to determine which is better to think next.

Thus we can interpret most parts of the design cycle with
the logical design process model (see Figure 2). It means the
cognitive model can be re-constructed as the logical model. It
is important because, as mentioned Section 1, our purpose is to
propose a logical model which is not only well defined but also
well related to human design processes.

6 The Design Simulator

We implemented a prototype of the de<” =~ simulator that
realizes the inferences discussed in Sectior. 4. We caii it the design
simulator because it is designed to track the design processes
performed by designers. The purpose of this system is to show
the proposed model is computable as well as suitable to represent
design processes.

This system is implemented in Allegro Common Lisp, CLX
(Common Lisp X interface), and X11 on Sparcstations.

6.1 The Architecture

The design simulator consists of three main parts; i.e., the
action level inference system, the object level inference system,
and the multiworld management system (see Figure 3). The ob-
ject level inference furthermore consists of workspace Ds, P, and
Ko, and three inference subsystems, i.e., deduction, abduction
and circumscription subsystems.

The Action-level. The action-level inference system works as
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Figure 3: The architecture of the design simulator

the meta-level to the object-level inference system. The infer-
ence on this level is currently performed by a rule-based deduc-
tive system. Knowledge used on this level is about how to de-
sign, for example, knowledge about selecting a knowledge base
and scheduling reasoning according to the condition of the ob-
ject level. Results of this deduction is a single or a sequence of
operations on the object level which are described in Section 4.
The Object-level. In the object level, abduction, deduction,
and circumscription are performed that change the current state
of Ds, P, and Ko. Workspace Ds contains the current descrip-
tions of objects, P the current descriptions of object properties
and behaviors, and Ko the current available knowledge.

The form of the content of Ko is Horn clause, while those

of P and Ds are literals, that is, atomic formula or its negation.
The inference on the object level modifies the contents of Ds, P,
or Ko and sometimes causes contradictions, which are reported
to the action-level as a condition of the object level.
The Abductive Inference. There are some studies in which
the abductive inference with Horn clauses is realized by using
the resolution principle[12][8]. We can infer whether a certain
formula is derivable from a given set of formulae by using it. As
the result, we can obtain a set of formulae selected from the given
set of formulae which can derive the queried formula. Suppose G
is a single or a set of atomic formula, A is a set of formulae which
represent possible hypotheses, and K is a set of formulae which
represent knowledge. We can find A C A and K C K which
satisfy AU K + G. This A is the result of abduction.

This algorithm may generate many solutions which include

trivial ones (e.g., G itself). To eliminate these solutions, we collect
only maximal solutions with respect to the relation deeper. Here a
set of formulae A, is deeper than A, iff A;UK F Az and A4, 2 A..
Circumscription. The circumscription system is implemented
using the algorithm proposed by Nakagawa and Mori[17] that is
an algorithm for computing circumscription[18] on clausal forms.
Their basic idea is to use the technique of program transforma-
tion such as unfolding when eliminating variable predicates and
abnormal predicates.
Multiworld Management System. The multiworld manage-
ment system keeps design states and their relations as data de-
pendency cooperated with ATMS system[19]. The idea of multi-
worlds with ATMS is shown by Morris and Nado[20]. Here we can
operate the multiworlds by logical formulae with modal operators
O (necessity) and < (possibility).

172

(1) What mechanism does a standard scale use?

(2) It measures the weight like this (Figure A).

(3) You use the spring to pull, but you can use it oppositely.

(4) If we use it to push, it is like this (Figure B).

(5) If we can use a rack and pinion (Figure C), we can measure the weight
because the displacement is in proportion to the weight.

(6) Do you know any other way to support the weight?

(7) No, only spring.

(8) Anyway, we think the indicator first.

(9) As a conclusion, what we want is something to measure the displacement
(x in Figure A).

(10) It is better to make it easy to see.

(11) Since it translates Smm of the displacement

to 100kg weight, the displacement per 1kg is 0.05mm.

(12) It is impossible to realize it with this (Figure C).

(13) If we don't mind the accuracy, it is possible by using many gears.
(14) Indicators in scales we can buy are upturned.

(15) Then, we have to use helical gears, but scales we can buy should use

simpler mechanism.
foot o

§ (l Ifoot§
fig. A -{X fig. B fig. C

Figure 4: The examples of protocol data
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6.2 Examples

We demonstrate how this system works with a set of for-
mulae which we extracted from the protocol data[7]. Figure 4
shows the original protocol data. This is the first part of the
design of which the task is “to design a scale”. Figure 5 shows
how Ds (descriptions of objects) and P (descriptions of object
properties and behaviors) change during the inference. In this
figure, a bold formula denotes a newly added one, and an italic
formula indicates a contradiction.

World 1 (Figure 5(a)) is the beginning of a session where
there are only the required specifications in them. Then the ac-
tion level inference prepares available knowledge. After abduction
and deduction are executed three times we can obtain World 5
(Figure 5(b)). This state corresponds to protocol 8 in Figure 4.
Then, the formula which represent protocol 11 and 12 are intro-
duced into Ko. This makes an inconsistency situation (World 6,
Figure 5(c)). It is because protocol 11 and 12 are contradictory
sentences to protocol 5. Circumscription modifies the formula
which represents protocol 5, and it makes us abandon the cur-
rent solution. The we obtain another solution (World 9, Figure
5(d)). Finally we obtain Ds and P shown as Figure 5(d). Figure
6 shows all the worlds generated during this session. The path
from the world 19 to world 21 does not appeared in the protocol
data, but the system can generate such possible design processes.
The difference between World 18 and World 21 is whether the
spring is used for compression or expansion.

7 Discussion and Related Work

In Chapter 2, we discussed what should be represented in
the design process model, and we proposed the logical design
process model to satisfy these requirements.

First, combination of synthesis and analysis is represented
by coupling of abduction and deduction, i.e., we realized the bidi-
rectional processes (Requirement 1).

And reasoning in the step-wise refinement is realized by it-
eration of abduction and deduction, and the state changing is
formalized by worlds and their relations under multiworld possi-



Ds P

has(sc1 sp9)
push(scl sp9)
1s-in-prop(sc1 100kg Smm)

has(sc1 sp9)
push(scl sp9)
is-in-prop(sc1 100kg Smm)

displacemem(Smm) displacement(Smm)
weight(100kg) weight(100kg)
translate(sc1 100kg Smm) translate(sc1 100kg Smm)
Lscale(scl) scale(scl)
(a) World 1
displacement(Smm) displacement(Smm) scale(scl
weight(100kg) weight(100kg) support(scl 100kg)
translate(scl 100kg Smm) translate(sc1 100kg Smm)
indicator(i8) indicator(i8) can-measure(scl 100kg)
has(sc1 i8) has(scl i8)
spring(sp9) spring(sp9)
has(scl sp9) has(scl sp9)
push(scl sp9) push(scl sp9)
(b) World 5
displacement(Smm) displacement(Smm) scale(scl)
weight(100kg) weight(100kg) support(scl 100kg)
indicator(i8) indicator(i8) can-measure(scl 100kg)
has(scl i8) has(scl i8) translate(scl 100kg S5mm)
spring(sp9) spring(sp9) —translate(scl 100kg Smm)

(c) World 6
displacement(Smm) displacement(5Smm) scale(scl)
weight(100kg) weight(100kg) support(sc1 100kg)
indicator(i8) indicator(i8) can-measure(scl 100kg)
has(sc1 i8) has(scl i8) translate(sc1 100kg Smm)
spring(sp9) spring(sp9) — is-upward(i8)

has(sc1 sp9)

push(sc1 sp9)
is-in-prop(scl 100kg Smm)
many-gears(mng)

has(scl sp9)

push(scl sp9)
1s-in-prop(scl 100kg Smm)
many-gears(mgl2)

| has(i8 mg12) has(i8 mg12)
(d) World 9
[ displacement(Smm) displacement(Smm) scale(sc1)
weight(100kg) weight(100kg) support(scl 100kg)
indicator(i13) indicator(il3) can-measure(scl 100kg)
has(scli13) has(scl i13) translate(sc1 100kg Smm)
spring(sp18) spring(sp18) is-upward(i13)

has(sc1 sp18)
push(scl sp18)
many-gears(il7)

has(scl sp18)
push(scl sp18)
many-gears(il7)

— is-easy-mechanism(il3)
is-easy-to-see(i13)
is-in-prop(sc1 100kg Smm)

has(113117) has(i13 i17)
helical-gear(hg16) helical-gear(hg16)
has(i13 hgl6) has(i13 hg16)
rack&pinion(rp20) rack&pimon(rp20)
has(scl rp20) has(scl rp20)

(e) World18

Figure 5: Changing of Ds and P

ble semantics (model logic) and partial semantics (Requirement
2).

Adoption of abduction as the basic process allows us to
represent feasible solutions (Requirement 3).

The two level inference not only can represent two types of
design knowledge, but also can use them properly. The object-
level inference and the meta-level inference work complementarily
so that lack of object-level knowledge can be covered by meta-
level knowledge, and coarseness of meta-level knowledge can be
interpolated by object-level knowledge (Requirement 4).

Execution of circumscription for resolving inconsistency as-
sures us that we should not care about incompleteness of knowl-
edge descriptions unless we meet inconsistency of knowledge, and
furthermore incompleteness of each piece of knowledge can be re-
duced by finding new additional descriptions for it (Requirement
5).

As mentioned above, circumscription is used to solve in-
consistency by modifying knowledge. Modification of knowledge
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@ : a possible world n

@ : a world where contradiction is found
@ : a world where circumscription is performed

@ : a world where specifications are not satisfied

:a possible path which was not appeared
in the protocol data

Figure 6: The generated worlds

can cause revision of the current solution so that we can obtain
a new solution after resolution of inconsistency. Thus resolution
of inconsistency can be a trigger to proceed design (Requirement
8).

Uncertainness of available knowledge and specifications can
be treated with the metal-level inference. But it is not the com-
plete solution for this problem. We provided the framework to
deal them but did not provide any explanation why and when
these uncertainness should be reduced (Requirement 6 and 7).

Although there are still some problems to be solved, the
model we proposed in this paper has enough capability as the
design process model. We are now proposing a framework of
intelligent CAD systems using this model[21].

There are some related studies. Dietteirch et al. proposed
FORLOG as a logical representation of design[10]. Although we
agree with them in some points (for example, assertion-based
approach but not term-based one), it has various drawbacks be-
cause it is based on the deductive framework in our term, in other
words “design is deduction” paradigm, for example, it can deal
only knowledge about how to design.

On the other hand, RESIDUE[12] which is based on the
abductive framework can only deal knowledge about objects. It is
not sufficient except in the domain where complete descriptions
of objects can be obtained such as electric circuit design which
they used as examples.

Kannapan and Marshek proposed a use of logic as realiza-
tion of mechanical design[22]. They allow four types of operations
for logical formula, but their meaning and relation is not clear as
logic and they are used only for a representation method for de-
sign methodology.

Treur proposed the use of partial semantics in the logical
framework for design[9)].




8 Conclusions

In this paper we proposed a design process model based on a
logical framework. This model adopts abduction, deduction, cir-
cumscription, and meta-level inference for reasoning, and partial
semantics and possible worlds semantics for representation.

As mentioned in Section 1, the design process model should
be not only well defined, but also computable and capable to
explain human design processes. We interpreted the cognitive
model of design processes by the logical design process model,
and showed that most of the cognitive model can be realized in
the logical process model. And we also demonstrated its com-
putability by implementing a prototype of the design simulator
based on this model.

Thus the logical design process model has a good capability
as the framework of intelligent CAD systems.
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