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In this paper, we first describe the design experiment, an experimental method used
to examine design processes. The results of design experiments were analyzed in
two different approaches. One was to outline transitions of object descriptions and
the designer’s viewpoint. The other was to extract a design cycle which was a unit
design process, and we found that design processes are composed of such design
cycles. Secondly, we show a framework for logical formalization of design
processes which is expected to serve as a basis for developing a design knowledge
representation language for intelligent CAD systems. We introduce deductive for-
malization based on two kinds of non-standard logic, viz. modal logic and non-
monotonic logic. This framework explains experimental data obtained in the design
experiment and is considered appropriate to represent design processes.

1. Introduction

Recent development of the concept of intelligent CAD systems focuses on design knowledge
representation that can be decomposed into two major issues yet to be solved. One is the
representation of design objects, and the other is the representation of design processes [1]. We
believe that the realization of intelligent CAD systems depends totally on these two issues.
Advances in computer graphics and geometric modeling contributed to achievements in the
representation of design objects. However, difficulties are found in the representation of design
processes, because design is considered one of the most intelligent and complex human
activities, and design processes reflect this fact.

In order to support designers with full knowledge about the intent and context of design,
intelligent CAD systems are required to explicitly represent design processes. There are many
approaches to representing design processes, but merely a descriptive cognitive theory might not
be sufficient: We need to develop a computational (or computable) theory of design processes
[2,3]. Computational theories are not established without scientific observation of phenomena
and a firm, sound mathematical foundation. As a first step towards such a theory, we need to
have well-formed representations. For this purpose we lay the foundation on logic.
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The remainder of this paper is organized as follows. Chapter 2 discusses an empirical method
to analyze design processes. We made design experiments in which designers were asked to
perform a design and the whole session was recorded on video tape. We analyzed protocols
and extracted an empirical design process model that could be categorized as a descriptive
cognitive theory of design. Chapter 3 proposes a method for logical formalization of design
processes. This logical formalization employs two types of non-standard logic; viz. modal logic
to represent necessity and possibility and non-monotonic logic to represent defaults and
assumptions. The experimental data can be described in this framework, thereby, it is
appropriate to represent design processes. Chapter 4 concludes the paper.

2. Design Experiment

2.1. A Method to Examine Design Processes

Design is an iterative process. The designer modifies and adds detail to design object using his
design expertise (i.e. his experience of past designs, his engineering know-how, established
design procedures). During the initial stages of the design the descriptions of design objects are
poor and incomplete because they consist of only specifications of the design and the
specifications themselves may be uncertain, incomplete and conflicting. As the designers
perform the iterative design process, the uncertainty and incompleteness are progressively
removed and the problem converges on a set of solutions.

There are some proposals to describe design generally and most of them can be classified as
traditional design methodologies (for example see [4,5]). But they are not completely
successful because they have little generality, i.e., they cannot be adapted to various types of
design in different domains. Although one reason of this is that design is too various and
diverse and that it is not an easy task to discuss design generally, there is another reason i.e.,
traditional design methodologies are based on the researcher’s experiences and textbook
knowledge of the domain. Therefore they confront difficulty when they are applied to other

domains.

Here, we try to establish a logical framework to represent design processes more generally and
formally. It is clear that this cannot be achieved without scientifically extracting information
about design processes. But it is difficult to perform this by simple observation of design
activities, because they are diverse, personal, complex activities. One useful method to perform
this is the experiment. Various kinds of scientific knowledge have been obtained by the
experimental way. We have suggested an experimental approach to investigate design and
called it design experiment [6,7]. In the experimental way we can prepare desired conditions
to reduce the difficulty of the observation.

2.2. Design Experiment

A typical design experiment is carried out as follows: We present designers with a design
problem and ask them to talk about everything they think about while designing. This is the
method which extracts human thought and it is called protocol analysis in psychology [8]. We
use a video tape recorder to record their conversations and their actions such as pointing a part
of figures. Furthermore we make copies of the figures, drawings and sketches once in every
few minutes. Thus we obtain various types of information including gestures, conversations
and drawings, and we arrange them to obtain protocol data. We have carried out several

experiments in this way so far.



327

The design problem we provided in one experiment was to design a part of the conveying
mechanism for an automatic vending machine of cigarettes. The carrier was a motor-driven
mechanism to take out one cigarette packet at a time from the stack. The purpose of this
experiment is to extract the flow of designers’ thought and thy way they proceed their design.
For this purpose we choose the design problem on the following conditions;

(1) The function of the machine must be specified clearly.

(2) The machine must be realizable.

(3) The mechanism of the machine is not known to the designers.

(4) Conceptual design must be included in the design process.

(5) The design process must be finished in several h.ours (i.e., in a day).

We provided the first two conditions, because designers should accomplish their tasks
successfully. Conditions (3) and (4) are needed to avoid routine or regular design processes,
because We think that designers’ thought should not always appear explicitly in routine design
processes. We must avoid long suspensions, because designers may think about the problem
during the break and we cannot know the thought. This is one reason for (5), and the other
reason is that too long protocol is difficult to analyze.

We made three pairs of designers composed of an engineer and five students and we presented
each pair with the same problem (see Table 1). It took three to four hours for each pair to
complete the design. The average protocol data counts approximately 500 statements and fifty
meaningful chunks of drawings. Figure 1 shows an example of the protocol data which is the
beginning of the design process performed in experiment No. 2.

Table 1: Designers of the Design Experiments

Experiment Designers
No. 1 Two students
No. 2 Two students
No. 3 An engineer and a student

2.3. Results of the Design Experiments

The protocol data was analyzed in two ways. In the first one, we focused on the transitions of
object descriptions and the designer’s viewpoint. We picked up statements and pictures in
which attributes of objects were mentioned explicitly and we constructed a description of the
design object at a moment. From this, we obtained a series of object descriptions that
illustrated the evolutionary transitions of object descriptions.

We extracted all the transitions from the design processes. Figure 2 depicts a partial example
of transitions of object descriptions. This is a part of the design process in which the
mechanism to push out the package was considered. This design process begins in the middle

of the protocol data in Figure 1.

A description at a certain moment consists of all the attributes already determined and is
represented by boxes connected by full lines in Figure 2. When a statement or a picture that
shows a new attribute appears, it is combined with the old attributes and the next description of
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"The problem is to decide how to take a package of
cigarettes out.”

"It is not necessary to pick up a package with a
hand-like mechanism." |
"How about pushing it out with something like a 7
forklift." i
"If the storage part is similar to the figure of the

specifications, it is sufficient to push it out one by one.”  figyre A(a) Figure A(b)
"If it only has to drop a package out of the storage part,
that is a good idea.”

"If you don't like dropping, it can be pushed out and
then carried by something like a conveyor belt."

"If the storage part is like in the figure, it is impossible

to push out like in Figure A(a)." | |
"It can be taken out from the bottom like Figure A(b)." / ﬁ
"D parameter in Figure A(b) must be greater than the

thickness of the package." Cl/ o

"OK. Then, let's think about a mechanism pushing it Figure B Figure C
out." [A]

"How about a rubber conveyor belt (Figure B)?" [S]

"Packages can be pushed out with the friction between —

packages and the rubber belt. But it is better to attach L~

pins on the belt to be sure to push them out.” [D]

"It depends on the speed of the belt whether the next
package is set on the right position or not." [E]

"It looks like this (Figure C). It returns to the stand-by
state as soon as it pushes out a package."

"We can use a mechanism like this (Figure D)."

"I don't think it is suitable for the purpose.”

"How about a crank mechanism?"

"How about a cam mechanism?" )

Figure D

Figure 1: Examples of the Protocol Data (Originally Spoken in Japanese)

the object is created. A white arrow indicates this adding operation of the new descriptions to
the old one, while a black arrow shows a transition of the designer’s viewpoint from one
description to another. The designer proposes alternative candidates for one subproblem and
this situation corresponds to the set of alternative solutions in the figure.

Some observations can be made.
(i) A design process is not linear but has many branches.

(ii) There are two transitions, viz. evolutionary transitions of object descriptions and transitions
of the designer’s viewpoint, and they are closely related to each other.

(ili) Having alternative solutions allows the designer to change his viewpoint from one to
another, when he is confronted with difficulties. The designer’s thought has such
mutability.

In the second way of the analysis, a design process is viewed as a mental process, i.e., as a
decision-making process. The designer decides to modify his descriptions of the object and this
decision-making process is denoted by the transition from one object description to another, i.e.,
a white arrow in Figure 2. We extracted five subprocesses that are rough breakdowns of these
decision-making processes and include the following:
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Alternative candidates, / ‘ 'L" \

L[ Cam mechanism | [Roller mechanism-1| / | Crank mechanist
/ f

| 7

[ Cam mechanism | [Roller mechanism-1] | Crank mechanism |
I I

[ A controlled motor] | Pins with the roller | [ Abentbar |

%, 27

Roller mechanism-1
X [Rolle ml anlsm.—l—l X

| Pins with the roller| | A stepping motor |

|

[Roller mechanism-1

]
[2 pins with the roller| | A stepping motor |

I
| 2percycle |

% : a description of the object <mmmsm : a transition of the object

X : giving up the alternative < :atransition of the designer's viewpoint

Figure 2: Examples of Transitions of Object Descriptions
and the Designer’s Viewpoint

Awareness of the problem: To pick up a problem by observing the object and the
specification and to determine this problem to be solved next.

Suggestion: To suggest key concepts needed to solve the problem.

Development: To construct candidates for the problem from the key concepts using various
types of design knowledge.

Evaluation: To evaluate the candidates in various ways, such as structural computation,
simulation of behavior, cost evaluation, etc.

Decision: To decide which candidate to adopt so as to modify the descriptions of the

These five subprocesses repeatedly appear in design processes. Thus we call the sequence of
these subprocesses a unit design cycle, and we consider that a design process is built up by unit
design cycles (see Figure 3). Figure 4 illustrates an example of this cycle obtained in the
protocol data. We found it from the part of the protocol data shown in Figure 1. [A], [S], [D]
and [E] in Figure 1 indicate the sentences used as Awareness-of-problem, Suggestion,
Development and Evaluation subprocesses in this example respectively.

There are two types of connections between design cycles (See Figure 5). If a design cycle
terminates successfully, the conclusion subprocess is followed by an awareness-of-the-problem
subprocess of the next cycle. This connection forms a sequence of design cycles and often
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[ Sumpion

[ Development
g

" Conclusion |

Figure 3: A Design Cycle

occurs in the routine design. When the designer wants to develop his design, he may notice the
e he evaluates his design object, he may find some
f the development or the evaluation subprocess is an
He must solve the new problems
This connection composes a hierarchy

lack of important information, or whil
problems. In these cases, the next step O
awareness-of-the-problem subprocess

Y Awareness of problemg

r : : S if Evaluation - B

[Awareness of problem] Mechanism pushing out the package -

r [Suggestion]

Conveyor mechanism with a rubber belt

Ceocoonono o Attaching pinsto thebeltnotto -
: .[peYelqpm:er_.\:t] allow the package slip on the belt.

S —— - Itdepends on the speed of thebelt .
~ [Evaluation] ' ypether it goes will. £ il

[ (Conclusion]

Accept. -

Figure 4: An Example of a Design Cycle

before he can come back to the previous problem.
structure of design cycles and often occurs in the conceptual design.

E 3

Awareness of problem

[ :Sugéestion#i,.;]

[ Development : - |

[—'—, - Evaluation ‘]
X

| Conclusion _]

¥

Awareness of problem|

of the next cycle.

. Awareness of problem

[ Sugg es_tion

-]

[ ©  Development:
S

2

[ © Evaluation .|

.
[ Conclusion: 2]

{ Awareness of problem| »
R

[ Su§§estion B

[~ Development 3

T
[Somggpien
[~ Development: B

B 2
[ . Evaluation - B

B

[ Conclusion ]
K 28

[ Evaluaton |
- —

r “Conclusion. . J

Figure 5: Two Types of Connections between Design Cycles

In this model, a design process is a set of design cycles, and a sequence of design cycles is
related to the sequence of transitions of object descriptions shown in Figure 2.

Ullman et al. [9,10] proposed a similar design process model by an empirical method. They
used ten design operators, namely select, create, simulate, calculate, compare, accept, reject,
suspend, patch, and refine, to represent design activities. These operators were classified into
three types, i.e., generation, evaluation, and decision. Furthermore they introduced an episode
as a sequence of several design operators to represent a certain activity, such as verify and
plan. This might be a good way to empirically analyze and classify design activities, but they
seem to be little interested in representing dynamically design processes as logical reasoning.
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Thus, their design process model lacks a method to explore the mechanism of the reasoning in
design processes, while we made our model in order to clarify and express it.

3. Logical Formalization of Design Processes

3.1. A Design Process as a Logical Process

In this section, we discuss how design processes can be logically formalized. We view a
design process as a deductive process that can derive descriptions about the design object from
the design knowledge and the specifications. This situation corresponds to logical deduction
that derives theorems from axioms. Advantages of pursuing logical formalization are multifold.
For instance, the results of this formalization can contribute to extracting language constructs to
represent design knowledge that consists of knowledge about both design objects and processes.

When we look at a design process as changes of object descriptions, the results of design
experiments make clear that design has three issues to be considered: The first is the stepwise
nature of design processes, i.e., the design is performed repeatedly by similar processes. The
second is branching in design processes. The designer may have some alternative solutions he
will pursue later; they can be done either one after another in succession or randomly. The
third is retractability of design processes. The designer may retract his previous decisions,
because he often carries out his design process by the trial-and-error method.

Although these points are crucial, a simple deduction system is not capable of expressing them.
Therefore, we introduce two non-standard logics to represent concepts that are particular to
design: One is modal logic, and the other is non-monotonic logic.

3.2. Modal Logic

Modal logic can be viewed as a logic with necessity and possibility [11] and is defined as an
extension of normal proposition or predicate logic. It has two modal symbols, i.., L for
necessity and M for possibility. In typical modal logic systems,

Lp -p
and
p > Mp

are always true because they are axioms or theorems. For example, suppose p is a sentence
‘“The part A is connected to the part B.”” Then Mp represents ‘‘“The part A must be connected
to the part B.”’ and p can be derived from it. Lp represents ‘‘The part A can be connected to
the part B.”” and it can be derived from p.

Modal logic is interpreted in multi-worlds, while standard logic is interpreted in a single world.
The fact Lp is valid in a certain world, if and only if p is valid in all the accessible worlds
from that world. The fact Mp is valid in a certain world, if and only if p is valid in at least
one accessible world from the original world. There are many different systems of modal logic
in which the properties of accessibility are different, and we chose the S4 system in which
accessibility is reflective and transitive. In the S4 system, the accessibility relation R must
satisfy following two formula;

uRu

and
URv N vRw — uRw
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where u, v and w are worlds.

We use this multi-world mechanism for representing design processes; a world represents one
state of the design process and its accessibility, i.e., the connectivity of the worlds represents
the flow of design processes. A formula in a certain world represents a description of the
object at a certain moment. If a world is accessible from another, the description in the former
world is more detailed than in the latter. Since we use the S4 system of modal logic, Lp in a
world represents what is always necessary after the moment that the world was generated. For
example, Lp in the initial world indicates what is always necessary through the entire design
process, such as the required specifications, because it must be valid in all the worlds. On the
other hand, for instance, Mp represents what is true in one or more worlds. Using such a
modal logic system, we can represent designers’ thought more naturally, because they seem to
use modality such as ‘‘necessity’’ and ‘‘possibility’’, in their thought. For example, the
designer may think ‘“The length of this part must be 100mm,”’ or ‘‘The part A can be replaced
by the part B.”” These statements can be naturally formalized by the following logical formulae;

Lequal (length(p),100), M{p(A)—>pB)}.

3.3. Non-Monotonic Logic

The second type of non-standard logic we use is non-monotonic logic (for example, see [12-
15]). It was developed to express reasoning with incomplete knowledge such as human thought.
What we believe at a certain moment is based on what we know at that moment. Therefore,
we revise our belief, if our knowledge is changed. In the revision we may retract our belief,
and such retractions cannot be expressed in standard logic. There are various types of non-
monotonic logics. For example, Reiter’s default logic [12] has a new symbol M and it is used
like :
a:MB/o,

which reads ‘‘if there is o and it is consistent to assume P, then infer @.”” This is useful to
represent defaults and assumptions.

We express this non-monotonicity with a symbol A, which means a limited use of M. For
example,

p 2 Aq

means ‘‘if p is true and it is consistent to believe ¢, then ¢ is true.”” We use a non-monotonic
expression to express weak statements in design processes that may be retracted in later
processes. Thus, statements in the suggestion subprocess, as well as temporary decisions, can
be represented as non-monotonic expressions.

3.4. The Results of the Formalization

We translated the protocol data obtained in design experiments into the logical form discussed
in the previous sections. Figure 6 shows some results that are extracted from the protocol data
and formalized in the following way.

First, we extracted logical relations among the statements in the protocol data. We defined
some facts as atom formulae appeared in the protocol data and changed the statements into the
logical formulae. Suppose we have a statement ‘“There is A”’ and a statement ‘‘if A then B”’.
We consider the second statement as a logical implication from fact A to derive a new fact B,
and we view this process as a deductive process. Then we introduce modal and non-monotonic
symbols. When there are alternative candidates for the problem, we generate worlds and put
statements about each candidate in one world. The notion of *‘( world n)” in Figure 6
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identifies the name of the world in which the statement is contained. Statements independent
from candidates are preceded by the L symbol, because these statements must be true in every
world. Furthermore the A symbol are used for statements that the speaker made with
uncertainty. Of course, there are some statements that cannot be viewed as deductive logical
formulae. In Figure 6, we identify these statements in italic typeface. There are mainly three
reasons why we cannot include them in the logical framework;

e  They are not within the framework of first-order predicate logic.
e  They are captured within the framework of deduction.

e They are not considered to be even within the framework of logic.

(world 0) awareness-of-the-problem(mechanism-to-check-sold-out(main-body,?))
(world 1) MAmechanism-to-check-sold-out(main-body, photo-sensor)

(world 0) LAhigh(cost(photo-sensor))
(world 2) MAmechanism-to-check-sold-out(main-body, spring)
(world 2) mechanism-to-check-sold-out(main-body, spring) — be-stressed(package)
(world 2) Mbe-stressed(package)

(world 0) L(weak(x) — —be-stressed(x))

(world 0) Lweak(package)

(world 0) L(—be-stressed(x)) .
(world 2) Mbe-stressed(package) and L(— be-stressed(x)) is contradiction
(world 2) M(—mechanism-to-check-sold-out(main-body, spring))

(world 0) L(—high(cost(photo-sensor)))

(world 0) evaluation

(world 0) conclusion(mechanism-to-check-sold-out(main-body,?),?=photo-sensor))

(world 0) L(mechanism-to-check-sold-out(main-body, photo-sensor))

Figure 6: Examples of the Logical Representation

Though this example is just a draft of formulation, we verified the appropriateness of the
formulation through translating the protocol data into this form and we can evaluate the results
as follows;

(1) Most of the development subprocesses and certain numbers of the evaluation subprocesses
in the empirical process model are represented as deduction. The non-italic statements in
Figure 6 are included in the development and the evaluation subprocesses in the model.
In these subprocesses new information is derived from the descriptions of the object and
knowledge the designer has. There are differences in types of knowledge between these
two subprocesses. For example, knowledge about how to propagate the alternation of the
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size is used in the development subprocess and knowledge about how to estimate cost and
life of the machine is used in the evaluation subprocesses. Because objects are detailed
mainly in these subprocesses, deduction plays an important role in design processes. On
the other hand, we cannot include the rest of the subprocesses, i.e., awareness-of-the-
problem, suggestion and conclusion in the logical framework.

(2) Modal expressions are useful to represent stepwise, branching design processes and
mutability of the designer’s thought. The designer considers multiple candidates and
furthermore multiple states of candidates at the same time. He sometimes focuses on one
candidate and sometimes glances over. These situation can be expressed easily by using
the multi-world mechanism in modal logic. For example, we generate a new world, when
a new decision is made or when an alternative candidate is made. We change the current
world, when he changes his viewpoint for instance.

(3) Backtracking and avoidance of inconsistency in design processes are similar to those in
non-monotonic reasoning. When the designer meets an inconsistent situation, he tries a
backtracking which causes the least modification, not chronological backtracking. He
seems to check the dependency relations in his design process.

Some problems are left unsolved. A major problem is whether only deduction is appropriate to
represent design processes. We assumed design processes were deductive, which turned out to
be partly correct. However, there are some non-deductive processes in design, and deductive
and non-deductive processes appear alternatively. Therefore, another inference mechanism is
yet needed to capture the rest of the design processes. For instance, the suggestion subprocess
can be viewed as a process to select a certain fact from design knowledge and as a process to
produce new axioms from the known axioms. Such limitations of deduction must be
investigated, and we must find out a most appropriate method (within the framework of logic)
to represent design processes. As an answer to this, we are now trying to use abduction ( {16];

also mentioned in [17]) and circumscription [18].

4. Conclusion

The purpose of this paper is to formalize design processes in order to develop a computational
theory of design processes. First, we have presented the design experiment method which is an
experimental method to obtain various useful information about design processes. From the
results of design experiments, we were able to obtain characteristics of design processes, such
as transitions of the designer’s viewpoint and the evolutionary nature of design, and we
proposed an empirical design process model.

Second, we suggested a framework for formalization of design processes based on deductive
logic that includes modal logic and non-monotonic logic. We examined how empirical data
could be represented in this framework, in which deduction plays a crucial role. We discussed
that these two types of non-standard logic are useful to express the characteristics of design
processes, which might be out of the scope of standard logic. Thus, the proposed framework is
considered appropriate to logically represent design processes and this implies that the logical
formalization will contribute to develop a design knowledge representation language for
intelligent CAD systems. However, we also found that there are processes that cannot be
represented in the framework and, thus, our next target is to extend our formalization to include

such types of design processes.
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