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Abstract. We introduce the metamodel as a new model-
ing framework for design objects based on General De-
sign Theory, a mathematical model of design. Using Gen-
eral Design Theory, the metamodel concept can serve
three functions: (1) as a central modeling mechanism to
integrate models, (2) as a mechanism for modeling phys-
ical phenomena, and (3) as a tool for describing evolving
design objects. Modeling with multiple points of view is
realized by representing physical phenomena that occur
in the design object and by constructing models with
knowledge of physics and design from the metamodel.
We illustrate the first and second functions of metamo-
dels with an example based on naive physics, and we
illustrate the third function of the metamodel through de-
sign experiments. Finally, we present two systems to il-
lustrate how the metamodel mechanism can be imple-
mented.

1 Introduction

Computer-aided design (CAD) systems are crucial
tools for designers in several engineering fields in-
cluding mechanical, electrical, aeronautical, archi-
tectural, and chemical engineering. A designer can
examine and manipulate products on a graphic dis-
play by drawing figures, querying databases, calcu-
lating, and repeatedly modifying ideas. As products
become increasingly complicated and technology
becomes increasingly advanced, the amount of en-
gineering knowledge needed by a single designer is
increasing to nearly unmanageable amounts. This
justifies the introduction of CAD systems, but such
systems are not without problems.

The emphasis on advances in computer graphics
technology would lead one to believe that handling
geometric information freely in the ultimate goal in
developing CAD systems. This is correct when only
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physical form is required, but in most engineering
fields physical form is not the only type of informa-
tion that is considered. For instance, aircraft de-
signers must work with computation of aircraft
wing behaviors. This computation requires not only
geometric information about the wings, but also
such information as material properties, welding
conditions of structural members, and possible
flight conditions. The same geometric information
about the wings will be used in aerodynamic compu-
tation, fatigue analysis, and eventually in machining
the hardware. This illustrates that engineering de-
sign requires various types of models, and the same
information may be used in different models.

Thus, CAD systems must be equipped with facil-
ities expressive enough to incorporate several kinds
of information, including geometric information, in
an integrated manner. At the same time, CAD sys-
tems must allow the designer flexibility in manipu-
lating design knowledge, so that any particular
chunk of knowledge can be used anywhere in a de-
sign process without transformation or translation.

CAD systems are in a state of transition between
the traditional drawing systems and the new engi-
neering systems in which geometric information is
not the sole agent of design activity [ten Hagen and
Tomiyama 1987]. These new systems are often
called computer-aided engineering (CAE) systems.
For instance, a two-dimensional CAD system can
only generate drawings which are projections of
real entities. Therefore, we foresee the need for
three-dimensional modeling systems that have the
ability to handle additional technological informa-
tion.

A technique called product modeling is an exam-
ple of current CAD technology and is applicable to
such fields as robotics and dimensioning and toler-
ances. However, product modeling is not the final
CAD solution because there is no end to the search
for the ultimate datamodel. For instance, if we need
to apply our three-dimensional solid modeler to ro-
botics, e.g., simulation of robot arms, we develop a
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module that computes the arm movement. If we
need to take tolerances into consideration, we must
modify part of the system code and develop an addi-
tional package for tolerances on top of the nominal
dimensions [Kimura, Suzuki, and Wingard 1986]. It
is possible to add any scheme for a new application,
but this manner of proceeding has the following
drawbacks:

» We must repeatedly implement new packages be-
cause we have yet to obtain a universal scheme
that can be applied to any engineering application.

» Schemes added on top of geometric modeling are
ad hoc in one way or another. This prevents reuse
of data in other applications and causes problems
in maintenance and consistency among different
data schemes.

» Each time we add a new scheme there may be
slight changes to the system, yielding problems
for system maintenance.

Therefore, CAD researchers have begun to stress
the importance of seeking an ultimate, general pur-
pose data scheme that goes beyond product model-
ing [ten Hagen and Tomiyama 1987; Gero 1987].
Until now there have been few reported achieve-
ments. A few results can be summarized as follows
[Tomiyama and ten Hagen 1987, 1987a; Veth 1987]:

 This problem has much in common with the prob-
lem of knowledge representation in artificial intel-
legence (AI).

* We must discover flexible, preconception-free,
yet efficient knowledge representation schemes
(data models in the terminology of databases).

+ Although geometric modeling plays an important
role in mechanical design, there is little hope that
such an ultimate data scheme can be found using
conventional geometric modeling techniques [Ar-
bab 1987].

» The basic concepts that must be incorporated into
such a scheme are entities, relationships among
entities, attributes of entities, and various kinds of
reasoning that appear in design processes.

Efforts to develop intelligent CAD systems [Gero
1985, 1987; Eder 1987, Sriram and Adey 1986, 1987,
1987a, 1987b; ten Hagen and Tomiyama 1987] must
be understood not only in the context of expert sys-
tems but also in the context of seeking a multipur-
pose modeling scheme for integration.

In this paper, we pursue yet another type of ulti-
mate modeling scheme. Metamodel serves as a cen-
tral modeling basis of CAD and allows flexible
transformations between various models used in de-
sign, and it supports integration of various models.
In Section 2, we discuss aspects of metamodels in
design theory, and we clarify fundamental terms

and concepts about modeling in design. We also
discuss and formalize three aspects of the metamo-
del: metamodels as a framework to integrate
models, metamodels as a framework to model phys-
ical phenomena, and metamodels as a tool for de-
signers to evolve ideas about design objects.
Section 3 concentrates on modeling of physical phe-
nomena. Section 4 describes how metamodels are
used anu represented in design processes from an
experimental point of view. Finally, in Section 5,
we show two experimental systems that we are cur-
rently developing as examples of a metamodeling
system.

2 Theory of Metamodels
2.1 Modeling in Design

A model is a theory-based set of descriptions about
the object world. A model has properties that repre-
sent the object world, and these properties are se-
lected and abstracted from entities and phenomena
in the object world. In this definition, modeling is a
process in which observed facts are filtered by a
theory to formulate a world which itself is complete
in terms of the theory. Figure | depicts this idea
about how models are constructed from theories.
For example, consider a mechanical system such
as the one shown in Fig. 2. A boundry representa-
tion geometric model of this system would focus on
the system’s geometric properties such as surfaces,
lines, curves, and points. The theory behind the
boundary representation model is algebraic geome-
try, and the geometric entities are represented
mathematically as algebraic equations. In the same

Modeled Object

Theory of Filtering

v

Representation

Fig. 1. Theories, models, and representations
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Fig. 2. Models for a mechanical system

way, a kinematic model is based on kinematics, a
damped mass model is based on the mechanics of
particles. a finite element model (FEM) is based on
strength of materials, and a block diagram model for
control is based on the classical control theory.
However, two models can be transformed to each
other only when the corresponding background the-
ories are compatible. For example, it is impossible
to transform an FEM model to a damped mass
model without additional knowledge about the
background theories. This suggests that. if we want
to transform models to each other, we must make
the corresponding background theories compatible.

Models and representations are different, too.
For a given entity, as many models can exist as
exist theories, and a single model can have many
different representations. For instance, a geometric
model can have wire-frame representations and sur-
face representations for raster graphics both con-
structed from the identical model. Drawings are one
kind of representation, mainly of geometric models.
A technical document is another representation of a
model.

Especially in mechanical design, we use various
kinds of models, such as drawings, as the working
tool to evaluate the functionalities of the design ob-
ject. These include geometric models, kinematic
models, dynamic models, mathematical models,
strength models, and others. The problem is that
the level and focus of the models are different. For
example, the information used in manufacturing is
too detailed for structural analyses. Therefore, dif-
ferent attributes sometimes might be considered to
be the same, although their internal values may be
completely inconsistent with each other. The meta-
model mechanism solves this problem by unifying
the different models to appear as a central design
model. By having a central model, we can avoid the
combinatorial explosion problem in implementing

data transfer programs between models and main-
taining consistency among them.

2.2 Roles of Metamodels

The metamodel concept has three aspects or roles.
The first role of the metamodel is to serve as a cen-
tral framework for integrating and unifying various
models used in CAD systems. As discussed in the
previous section, integration of models requires
compatibility between the corresponding back-
ground theories. For instance, consider integrating
the FEM model to evaluate strength with the dy-
namics model to evaluate dynamic behaviors as in
Fig. 2. Obviously, the FEM model contains geomet-
ric information, material properties, and mesh in-
formation, whereas the dynamic model contains in-
formation about mass distribution in addition to
geometrical information and material properties. In-
tegration of these two models might be achieved by
constructing a common database that contains geo-
metrical information and material properties, and
adding additional modules to generate meshes and
compute mass distribution (Fig. 3). Note that mesh
generation and computation of mass distribution are
dependent on geometrical information and material
properties, so changes made in geometrical proper-
ties should propagate to the mesh and mass distri-
bution.

This method of integration is, accordingly, an ad
hoc approach and has the following drawbacks:

« If we wish to integrate another model, it is neces-
sary to modify the entire modeling scheme. The
problem is that this modification is necessary
every time we introduce a new model and that
propagation of changes is not an easy task.

+ The level and focus of models are different from
each other. For example, mesh information can
be generated from geometric information. How-
ever, this does not mean that the FEM model con-
tains exactly the same external shape as the geo-
metric model because minor features in the
external shape are frequently omitted from struc-

FEM Model R
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Dynamics Model
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Material Information

Mesh Information Mass Distribution

( Geometrical Information

Fig. 3. Integrations of an FEM model and a dynamic model




22 Tomiyama et al.: Metamodel: A Key to Intelligent CAD Systems

tural computation. As stated previously, this
problem arises from the incompatibility of the
background theories.

The metamodel mechanism must adsorb incompati-
bility in the background theories. It should have not
only the results of abstraction of attributes or prop-
erties from objects, but also the details of how the
abstraction was made. In other words, the metamo-
del mechanism does not integrate models but in-
stead integrates the background theories behind the
models.

This discussion leads us to the second meaning
of the metamodel; it is a mechanism to model physi-
cal phenomena. The metamodel mechanism should
contain descriptions about how models are made.
In Section 3, we will discuss this aspect of the meta-
model in more detail.

Design is a process in which the designer builds
ideas about artifacts to satisfy given specifications.
Usually, the designer must build from imprecise,
incomplete, and inconsistent specifications. Design
objects evolve as the design process proceeds to
arrive at the final state with precise, complete, and
consistent descriptions. The third function of the
metamodel mechanism is to serve as a work space
for designers by providing them with various work-
ing models in the design process. We will examine
this aspect in Section 4, after formalizing metamo-
dels in the following sections.

2.3 General Design Theory

Design objects, such as a machine part or a floor
plan, can be represented reasonably well now in
computers through geometric modeling. Compared
to design objects, design processes are not well de-
scribed nor even understood. There are a number of
efforts to create theories of design. For example,
see [Hubka and Andreasen 1983; Hubka 1985; Eder
1987]. However, for the most part, these theories
are not computer-implementable or computable the-
ories [Kalay 1987]. Some are only collections of
episodes or lessons obtained from practices over
years. What is needed is a method to describe de-
sign processes logically so that we can trace design
using computers [Veth 1987].

The metamodel mechanism was born from a
computational approach to design processes. In this
section, we introduce General Design Theory as the
basis to formalize design processes and to describe
design knowledge. (Readers are invited to refer to
[Yoshikawa 1981, Tomiyama and Yoshikawa 1987]
for more precise discussions.) In the next section

Function Space Attribute Space

Design

Fig. 4. Design process in the ideal knowledge

we deal with the metamodel concept theoretically in
the context of General Design Theory.

General Design Theory is based on axiomatic set
theory; i.e., we begin with three axioms, the entity
concept set, and its topology to describe design
knowledge.

Axiom I (Axiom of recognition). Any entity can
be recognized or described by attributes and/or
other abstract concepts.

Axiom 2 (Axiom of correspondence). The entity
set S’ and the set of entity concepts (ideal) S
have one-to-one correspondence.

Axiom 3 (Axiom of operation). The set of ab-
stract concepts is a topology of the set of entity
concepts.

We define design as a mapping from the attribute
space to the function space, both of which are de-
fined over the entity concept set. Here, we can in-
troduce ideal knowledge that knows all of the ele-
ments of the entity set, and can describe each
element without ambiguity by abstract concepts.
The most significant result of having the ideal
knowledge, which can be proven from the three axi-
oms, is that design as a mapping from the function
space to the attribute space immediately terminates
when the specifications are described. (Since one
knows everything perfectly in the ideal knowledge,
when the specifications are completely described in
terms of function, the solution is obtained in terms
of attributes.) This says that design in the ideal
knowledge is a mapping process from the function
space to the attribute space and that there is no
substantial computation required (Fig. 4). Thus, in
the ideal knowledge we can immediately obtain de-
sign solutions.

Of course, this is not the case in the real design
and we must take several characteristics into con-
sideration. First, design is not a simple mapping
process but a stepwise refinement process in which
the designer seeks a solution that satisfies con-
straints. In addition, the concept of function is diffi-
cult to formalize objectively. It includes a sense of
value that can be different from person to person.
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Instead of using an objective definition, we use the
concept of behavior to deal with function. Finally,
the ideal knowledge does not take physical con-
straints into consideration and may produce design
solutions such as perpetual machines.

These restrictions are considered in the real
knowledge in which design is regarded as a process
where the designer builds towards the design goal
trying to satisfy specifications without violating
physical constraints. In order to formalize the real
knowledge. we first define a physical law as a de-
scription about the relationship between the physi-
cal quantities of entities and the field. The concept
of physical laws is one of the abstract concepts
formed when one looks at a physical phenomenon
as manifestation of physical laws. Physical laws
constrain entities in the real world; any feasible en-
tity must be explicable by physical rules. This fact
can be proven as a theorem.

Theorem 1. The set of physical law concepts is a
base of the topology of the set of (feasible)
entity concepts.

An interesting fact about the real knowledge is that
we can prove finiteness or boundedness of our
knowledge by having the following hypothesis:

Hypothesis. There exist finite subcoverings for
any coverings of the set of feasible entity con-
cepts made of sets chosen from the set of phys-
ical law concepts.

This hypothesis says that a feasible entity is ex-
plicable not by an infinite number but by a finite
number (as small as possible) of physical laws.
From this hypothesis, we can prove the following
interesting theorems:

Theorem 2. In the real knowledge, there exists a
distance between two different entities.

Theorem 3. In the real knowledge, it is possible
to make a coverging subsequence from any de-
sign specifications and to find the design solu-
tion for the specifications.

Theorem 2 explains that every attribute has a value,
if it is possible to measure the distance. Theorem 3
indicates that in the real knowledge a design pro-
cess can be regarded as a convergence process, but
solutions are not guaranteed to exist as a single
point; it is also possible to obtain no solution or
multiple solutions. However, it is guaranteed to find
a solution by picking interesting points. This corre-
sponds to the convergence of lim_. (—1); if we
choose only i which are odd numbers, this sequence
converges to — 1; if even numbers, we then get |.

2.4 Evolutionary Design Process Model

Our next step is to formalize design processes in the
real knowledge. For this purpose, we formally in-
troduce the concept of metamodels, where a meta-
model is a finite set of attributes and the metamodel
set is the set of all metamodels.

Theorem 4. If we evolve a metamodel, we get an
entity concept as the limit of evolution.

This theorem states that, if we describe solution
candidates in attributes for the given specifications,
by increasing the attributive descriptions we obtain
an entity that is not always a solution. However, if
we choose the set of physical law concepts as the
metamodel set, the entity as the limit of evolution is
the design solution.

Theorem 5. If we choose concepts that can be
explained by such physical law concepts as the
metamodel, we can describe the design specifi-
cations by the topology of metamodel, and
there exists the design solution that is an ele-
ment of this metamodel.

This theorem guarantees that we are able to design
as far as specifications are given in terms of (physi-
cal) behaviors, and solutions are described in terms
of attributes that can be measured by physical laws.
Furthermore, solutions contain only objects that
can be realized physically: in other words, we are
not allowed to consider objects that contradict
physical laws. At the same time, the theorem indi-
cates a design process that is a stepwise, evolution-
ary transformation process with solutions that are
obtained in a gradual refinement manner. Figure 5
depicts this design process based on the concept of
metamodels incorporating physical laws, which we
call the evolutionary design process of metamodels.

Metamodel Set

Fig. 5. Design process in the real knowledge
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Compromise

Backtrack

Fig. 6. Evolutionary design process. M: metamodel; M;: temporary metamodel; M}: model

In the ideal knowledge, design is a direct map-
ping process from the function space of the attribute
space, while in the real knowledge, design is a
stepwise, evolutionary transformation process. The
designer will first generate candidate solutions for
the given specifications. These candidates will be
improved toward a final solution that satisfies the
specifications. Figure 6 illustrates the evolutionary
design process model in which the design object is
stored in the central model, since models for vari-
ous kinds of evaluation will be derived from this
metamodel. The metamodel can be a set of logical
assertions and a model will be constructed from it
using knowledge for evaluation.

So far, we have formalized the three functions of
metamodels using General Design Theory:

* a central modeling mechanism to integrate
models,

* a mechanism to model physical phenomena (be-
cause metamodels must be explicable by physical
laws), and

» a working tool for designers in an evolutionary
design process model.

In the following sections, we will illustrate the im-
plementation of these three modeling mechanisms
in an intelligent CAD environment.

3 Modeling Physical Phenomena

This section deals with the first and second func-
tions of metamodels; i.e., metamodels as a central
modeling mechanism to integrate models and as a
mechanism to model physical phenomena. As
pointed out in Section 2.1, models are constructed
by applying theories, so it is crucial to make back-
ground theories compatible rather than to make
models compatible when models are integrated.
Thus, we must represent information on physical

phenomena that happen in design objects. This jus-
tifies the following attempt to represent and reason
about physical phenomena.

3.1 Naive Physics

As an example, we will consider abrasion (Fig. 7).
A model of abrasion consists of such information as
the site where friction occurs, the forces on each
part, and the material properties. A model of design
objects cannot be constructed without knowing the
theories of physical phenomena acting on the design
object. We propose, as a mechanism to realize such
a representation scheme, naive physics (or qualita-
tive physics) [Bobrow 1984]. Our justification for
this is that during conceptual design stages an ob-
ject does not have complete attributes, therefore its
behavior can be represented only qualitatively.
However, we need knowledge about the phenome-
non itself to construct models. The knowledge
about the phenomenon for this example is listed
below:

« friction is occurring on the two parts,
« force is being applied to the parts,
« thus abrasion is caused.

Qualitative physics reasons about physical phenom-
ena to find out what effect that phenomena will have
in the observed system. For example, consider the
situation shown in Fig. 8 [Forbus 1984]. The situa-
tion consists of entities, namely the contained liquid
and the boiler, and the fact that the boiler is heating
the liquid. A physical law is then found to be appli-
cable to this situation—that the heated water in-
creases in temperature. The temperature rises and
might reach the boiling point. Facts that can be de-
rived in this process are:

» objects exist here,
+ water temperature increases,
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Fig. 7. Abrasion

- two naive laws: heated water increases its temper-
ature and boiling occurs in water at the boiling
point.

We employ the basic idea of Qualitative Process
Theory [Forbus 1984] to represent physical phe-
nomena in the context of metamodels. The theory
consists of three notions, i.e., individual view, pro-
cess view, and history. An individual view is a cate-
gory of existing entities, such as water, a container,
and a heater. A process view is a category of physi-
cal occurrence influence on entities. Heating is rep-
resented with a process view, having influence on
water to make its temperature increase. In mechani-
cal systems, energy transformation, transmission,
and vibration are members of this category. A his-
tory is represented by a sequence of individual
views and activated process views. A history of
heating, for example, begins with a process heating
acting on water, which causes the water tempera-
ture to rise. If the temperature reaches the boiling
point, the process boiling becomes part of the his-
tory. In the metamodel theory, a history represents
sequential phenomena occurring on or to objects,
together with their causal dependency.

Individual and process views are supported by

container

water

heater

Fig. 8. Heating water

individual views
a-work, a-hand, an-arm, a-cam, a-gravity
processes
(0,t1 )force(upward, a-cam, an-arm)
(t0,t1 )force(upward, an-arm, a-hand)
(10,t1 )force(upward, a-hand, a-work)
(20,11 )force(downward, a-spring, an-arm)
(10,t1 )gravity(downward, a-cam)
(10,t1 )gravity(downward, an-arm)
(10,t1 )gravity(downward, a-hand)
(20,t1 )gravity(downward, a-work)
(t0,t1 )move-by-cam-mechanism(upward, a-cam, an-arm)
(t0,t1 )move-by-connection(upward, an-arm, a-hand)
(t0,t1 )move-by-grip(upward, a-hand, work)
transition
WORK : place(w0) — place(wl)
HAND: place(h0) — place(hl)
ARM: place(a0) — place(al)
CAM: place(c0) — place(cl)

Fig. 9. Descriptions for the pick and place mechanism

the preconditions that justify their existence. In the
example of heating water, the process boiling is
supported by the process heating. When the pro-
cess heating ceases, boiling cannot continue.

3.2 Examples

We have implemented a program to examine Quali-
tative Process Theory and a means to qualitatively
represent the behavior of machines. Figures 9 and
10 show an example of a simple mechanism for a
“pick and place’ job. A work located at the
place(w0) moves via the place(wl) to the place(w2).
A robot hand grips the work and moves along the
path place(h0), place(hl), and place(w3). The hand
is connected to an arm, and as the arm is pushed up
by the cam the hand follows. Figure 11 represents
the phenomena happing from the time 70 when the
work is at the place(w0) to the time ¢/ when the
work is at the place(wl).

In this situation, three processes are occurring.

T place(p1) place(p2)
cam

[ ]ptacero)

Fig. 10. Pick and place mechanism
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Yodefine {

((type (process move-by-cam-mechanism))
(localname local-cam local-object local-direction)
(conditions

(direction local-direction)
(can-move local-direction local-object)
(contact local-direction local-cam local-object)
(rotating local-cam))
(add-conditions
(apply-force local-direction local-cam local-object)
(moving local-direction local-object))
(relations
(relation+
(position local-direction local-object)
(displacement local-direction local-cam))))}

When

a cam is contacting with a follower in a direction,
and the cam is rotating,

and a follower can move in the direction,

then

the cam applies force to the follower in the direction,
and the follower is moving,

and position of follower is proportional to displacement of cam.

Fig. 11. Representation of phenomena

* The cam is pushing up the arm (process move-by-
cam-mechanism)

* The arm is lifting the hand (process move-by-con-
nection)

* The hand is lifting the work (process move-by-

grip)

Process move-by-cam-mechanism is applicable to a
pair consisting of a cam and an arm which is defined
in the system as in Fig. 11.

Figure 12 is the result of a simulation, showing
which individual views and processes occurred in
this situation. The simulation begins with the given
initial situation, namely the set of existing individ-
ual views and the process views, then instantiates
possible individual views and process views. Pro-
cesses make the value of variables either higher or
lower, as shown in the result. We used this qualita-
tive simulator to seek principles for representation
of physical phenomena in the metamodel mecha-
nism. Later in Chapter 5, we will describe another
system that is based on these principles of qualita-
tive simulation.

EPISODE 1
ACTIVE PROCESSES
(CAM-ROTATE+

(((PROCESS CAM-ROTATE))(LOCAL(LC-CAM A-CAM))))

(MOVE-BY-CAM-MECHANISM+

(((PROCESS MOVE-BY-CAM-MECHANISM))
(LOCAL(LC-CAM A-CAM)(LC-OBJECT AN-ARM)(LC-DIRECTION UPWARD))))

(MOVE-BY-FIX+
(((PROCESS MOVE-BY-FIX))

(LOCAL(LC-OBJECT1 AN-ARM)(LC-OBJECT2 A-HAND)

(LC-DIRECTION UPWARD))))
(MOVE-BY-GRIP+
(((PROCESS MOVE-BY-GRIP))

(LOCAL(LC-HAND A-HAND)(LC-WORK A-WORK)(LC-DIRECTION UPWARD))))

eight more processes are omitted

ACTIVE INDIVIDUALS
(A-CAM ((IVIEW CAM)) (LOCALY)))

(AN-ARM (((IVIEW ARM)) (LOCALY)))
(A-HAND ((IVIEW HAND)) (LOCALY)))
(A-WORK ((IVIEW WORK)) (LOCALY)))
(A-SPRING (((IVIEW SPRING)) (LOCALY)))

(UPWARD ((IVIEW DIRECTION)) (LOCAL)))
(DOWNWARD (((IVIEW DIRECTION)) (LOCAL)))
(THE-GRAVITY-FIELD ((IVIEW GRAVITY-FIELD)) (LOCAL)))

CHANGING VARIABLES
(ANGLE A-CAM) INCREASING

(DISPLACEMENT UPWARD A-CAM) INCREASING
(POSITION UPWARD AN-ARM) INCREASING
(POSITION UPWARD A-HAND) INCREASING
(POSITION UPWARD A-WORK) INCREASING

POSSIBLE CHANGE OF ORDER

FROM: (ANGLE A-CAM) < (MAX-ANGLE A-CAM)
TO: (ANGLE A-CAM) = (MAX-ANGLE A-CAM)

Fig. 12. Result of simulation
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4 Metamodel in the Evolutionary
Design Process Model

4.1 Metamodels and Design Activities

We have discussed the first two functions of meta-
models. In this section, we focus on the third func-
tion, i.e., metamodels in the evolutionary design
process model. General Design Theory defines de-
sign as a mapping from the function space onto the
attribute space, but in real design activities, design
cannot be performed in such a straight-forward
manner. There are many steps between the function
space and the attribute space and the metamodel is
used as a tool for designers to evolve design objects
(in CAD terms as a working database). In this evo-
lutionary design process model, design is treated as
a sequence of unit processes that transfer one state
of objects to another (Fig. 6).
Unit processes include the following:

(a) Designers observe the current metamodel and
determine what is to be decided next.

(b) Designers think about and obtain solutions. In
the narrow sense, this alone is regarded as a
design process.

(c) Designers evaluate their solutions using various
models. (These models are integrated by the
first meaning of metamodel).

(d) Designers decide which solution to adopt and
make the next metamodel. If there is no solu-
tion that satisfies the requirements, they must
go back to and revise the current or older meta-
model.

In order to perform the unit processes sequentially,
metamodels must have information not only about
design objects but also about processes. because
metamodels define the boundaries between the unit
processes. A unit process uses the metamodel as a
precondition to make the next metamodel. Metamo-
dels provide information for decision making and
control. For example, a metamodel contains proce-
dureal knowledge that specifies the design order.

4.2 Design Experiment

In this section, we verify and develop the evolution-
ary design process model in comparison to real de-
sign activities. We adopt the design experiment
method [Yoshikawa, Arai, and Goto 1981] to recog-
nize and analyze the design activities. The method
consists of the following parts; we present one or
more designers with a design problem and ask them
to say what they think while designing. We record
what they say, what they do, what they draw, and
what they write until they complete their design.

This recording and exploring is called protocol anal-
ysis [Ericsson and Simon 1980]. Drawings,
sketches, and gestures, such as pointing to a part of
a figure, play crucial roles in design. We record not
only sayings but also figures and gestures. We re-
form them into procotol data after the completion of
the design.

We have carried out several experiments with
this method so far. The design problem we have
selected is to design a part of the conveying mecha-
nism for an automatic cigarette vending machine.
The carrier is a motor-driven mechanism to take out
one piece of goods from the stack. We made three
pairs of subject designers composed from an engi-
neer and five students, and presented each pair with
the same problem to solve. It took three to four
hours to solve the problem. Their design processes
were recorded by VCR, and Fig. 13 shows an exam-
ple of the protocol data.

We analyzed the protocol data in two ways,
which turned out to be useful in recognizing how
the concept of metamodels can be used in design
activities. First, we picked up statements in which
attributes of the object are represented explicitly,
and reconstructed transitions of object descriptions
(Fig. 14). Descriptions of an object are represented
by boxes connected with full lines. A white arrow is
a transition of an object description toward detail-
ing. The black arrow indicates a transition of the
designer’s viewpoint. Transitions of object descrip-
tions are associated with the evolution of the meta-
model. Figure 14 indicates the evolution process of
the metamodel. Some observations can be made:

» An evolution process is not linear, but has many
branches. Even if a branch is selected, other
branches are valid because they may be reused at
later moments.

« Transitions of the designer’s viewpoints are dif-
ferent from transitions of the metamodel, but they
are closely related to each other.

» Because designers always have alternative solu-
tions, they change their viewpoints from one to
another when they are confronted with difficul-
ties. A designer’s thoughts are parallel and mi-
grate frequently.

« Descriptions of objects are not the metamodel it-
self. There can be many viewpoints and the de-
scriptions can be different from one viewpoint to
another. However, a viewpoint and the descrip-
tions associated with it are a possible representa-
tion of the attributes of objects.

Second, we analyzed the decision process. Design-
ers proceed in the design by adding or revising their
descriptions about objects. We defined a decision
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" The problem is deciding how to take a package of cigarettes out. "

" It is not necessary to pick up a package with a hand-like mechanism."

" How about pushing it out with something like a forklift? "

" If the storage part is like the figure of the specifications, it is sufficient to push it out one at

atime.”

" If it only has to drop a package out of the storage part, that is a good idea.”
" If you don't like dropping, it can be pushed out and then carried by something like a conveyor

belt. "

" If the storage part is like the figure, it is impossible to push out as in figure A(a)."

" It can be taken out from the bottom as in figure A(b). "

" The D parameter in figure A(b) must be greater than the thickness of the package. "

" OK. Then, let's think about an extruder. "
" How about a rubber conveyor belt (figure B)? "

" We can use the friction of rubber, but it is better to make raised sections on the rubber to

move packages. "

Fig.A (a)

Fig.A(b) Fig.B

Fig. 13. Examples of protocol
analysis

process as a transition from one metamodel to an-
other, as represented by the white arrows in Fig. 14.
Though a decision process looks complicated ini-
tially, we can identify five subprocesses that are
rough breakdowns of decision processes. They in-
clude:

(1) Awareness of the problem: Determine what the
problem to be solved is.

(2) Suggestion: Suggest key concepts necessary to
solve the problem.

(3) Development: ldentify candidates for solution
of the problem from key concepts using various
types of design knowledge.

(4) Evaluation: Evaluate the candidates in various
ways, for example, structural computation, sim-
ulation of behaviors, cost evaluation, etc.

(5) Decision: Decide which candidate is adopted.
Change the description of the object.

These five processes appear many times in design
processes. We call this set of subprocesses a design
cycle. Design processes can be constructed with a
set of cycles. Figure 15 illustrates an example of this
cycle found in the protocol data. This cycle is simi-
lar to the evolutionary process model. Each subpro-
cess in this cycle corresponds to each unit process
in the evolutionary process model, i.e., (1) to (a), (2)
and (3) to (b), (4) to (c), and (5) to (d).

4.3 Logical Formalization of the Design
Processes

In this section we discuss how the evolutionary de-
sign process model can be represented with a for-
malized model. Advantages of pursuing logical for-
malization are multifold. As shown in the next
section, the results of this formalization can con-
tribute to extracting constructs of a language that
represents design knowledge which consists of
knowledge about both design objects and pro-
cesses. Furthermore, we can introduce various
nonstandard logics to represent concepts that are
particular to design [Veth 1987]. If we did this with-
out logical formalization, the situation would be
quite messy.

This approach for formalization is different from
that of other research; see [Ullman, Dietterich, and
Stauffer 1988]. They are more interested in extract-
ing design operators, and seeing design as a sequen-
tial collection of operations, whereas our approach
does not necessarily require such operators. We in-
terpret a design process as a logical deductive pro-
cess that can derive descriptions about the design
objects from design knowledge and design specifi-
cations in the same way as a deductive process de-
rives theorems from axioms.

Our approach makes clear that design has two
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Fig. 14. Examples of transitions of ob-
ject descriptions

"How about the cam mechanism?" [suggestion]

"The cam mechanism makes shocks." [development]

"We decide not to adapt the cam mechanism.” [conclusion]

"We must decide the mechanism to push out.” [awareness of problem]

"We must control the motor to stop each time the cam rotates once." [development]

"So, | am afraid that the machine's life will be short because of the shocks." [evaluation]

Fig. 15. Examples of design cycle

issues that must be considered. One is parallelism
in design processes. Designers typically have some
solutions that they later pursue, which can be done
either successively, one after another, or quite ran-
domly. The other is retractability of design pro-
cesses. Designers decide some details at one point
but may retract their decisions because they often
proceed in their design processes by the trial-and-
error method.

Although these two points are crucial in design
processes, a simple deductive system does not have
the capability to handle them. To overcome this
problem, we introduce two non-standard logics.
One is modal logic and the other is non-monotonic
logic. Modal logic can be seen as the logic of neces-
sity and possibility [Hughes and Cresswell 1972]. It
is defined as an extension of normal proposition
logic or predicate logic. It has two new symbols, L
and M, which are called modal operators. For ex-
ample, designers seem to use different kinds of
truth values, as in ‘*The length of this part must be
100 mm,” or ‘“The part A can be replaced by the
part B.” These statements can be naturally formal-
ized by the following logical formulae:

Leg(length(p),100),
Vp M{p(A) = p(B)}.

The second formula suggests that higher order logic
is also needed to describe reasonings in designing.

Modal logic is interpreted in multi-worlds, while
the standard logic is interpreted in a single world.
Lp is valid in a certain world, if and only if predicate
p is valid in every world which is accessible from
that world. Mp is valid in a certain world, if and
only if predicate p is valid in one or more worlds
which is accessible from that world. We use these
properties to represent design processes, i.e., one
world corresponds to one solution (or one proposal)
and accessibility corresponds to the flow of design
processes. In this interpretation Lp represents what
is always necessary through the entire design pro-
cess, such as the required specifications. Mp repre-
sents what becomes true during the design process,
such as a particular property of a particular solu-
tion.

The other logic we use is non-monotonic logic
[Reiter 1980]. it expresses reasoning with incom-
plete knowledge such as human thought. What peo-
ple believe at a certain moment is based on what
they known at that moment, so they revise or re-
tract their belief if their knowledge changes. Such
retractions cannot be expressed in standard logic.
Non-monotonic logic has a new symbol A that des-
ignates belief which is believed if there is no con-
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arise-of-problem(mechanism-to-check-soldout(main-body,?))

(world 1)L Ahigh(cost(photo-sensor))
(world 2)MAmechanism-to-check-soldout(main-body, spring)

(world 2)Mbe-stressed(package)

(world 2)L(week(x) -> not be-stressed(x))
(world 2)Lweek(package)

(world 2)L(not be-stressed(x))

(world 1)L(not (high(cost(photo-sensor))))
evaluation

L(mechanism-to-check-soldout(main-body, photo-sensor))

(world 1)MAmechanism-to-check-soldout(main-body, photo-sensor)

(world 2)mechanism-to-check-soldout(main-body, spring) -> be-stressed(package)

(world 2)Mbe-stressed(package) and L(not be-stressed(x)) is contradiction

(world 2)M(not mechanism-to-check-soldout(main-body, spring))

conclusion((mechanism-to-check-soldout(main-body,?)),?=photo-sensor))

Fig. 16. Examples of logical formaliza-
tion

trary fact. For example,
p— Ag

means “‘if p is true and there is no contradiction to
q. then g is true.”

We use this type of non-monotonic expression to
express weak statements in design processes that
may be retracted in further processes. For example
we represent statements of suggestion as non-
monotonic expressions.

We have translated the protocol data into this
logical form using modal and non-monotonic logics.
Figure 16 shows examples of the logical representa-
tion. Although they are not strictly in logical form,
they show how protocol data can be expressed.
However, logic is generally an appropriate tool to
formalize design processes, particularly to repre-
sent the evolutionary process model. We can con-
clude from this representation as follows:

* Most of the development subprocess and certain
parts of the suggestion and evaluation subpro-
cesses are represented as deductive processes.
Modal expressions are useful to represent
stepwise design processes and designers’ view-
points.

Backtracking and avoidance of inconsistency in
design processes are similar to those in non-
monotonic reasoning.

S Prototypes of Intelligent CAD Systems

In this section, we show two prototypes of intelli-
gent CAD systems that illustrate the concept of me-
tamodels; a language to describe design knowledge

and a physical phenomenon modeler based on qual-
itative physics. Both systems are now under devel-
opment in our laboratory.

5.1 A Language for Intelligent CAD Systems

Based on the concept of metamodels, a language
that describes design knowledge of both design ob-
jects and processes has been developed in
Smalltalk-80, an object-oriented langauge [Goldberg
and Robson 1983]. This language is designed as an
environment for easily implementing design knowl-
edge and is called Integrated Data Description
Language; (IDDL) originally in the Intelligent
Integrated Interactive CAD (IIICAD) project con-
ducted at the Centre for Mathematics and Com-
puter Science in Amsterdam [Veth 1987].

IDDL is the kernel language of the IIICAD sys-
tem. The configuration of IIICAD is illustrated in
Fig. 17. System elements of IIICAD all use IDDL
and, in particular, the supervisor controls the sys-
tem using scenarios. In order to describe the
stepwise refinement nature of design shown in Fig.
6, IDDL has a unit to represent the basic design
cycle as discussed above:

« identify or generate a candidate solution for the
given metamodel,

* make a model from the metamodel,

evaluate the model, and

» modify or detail the metamodel so that it meets
the specifications.

The language construct to do these in IDDL is a
scenario. A scenario consists of a set of objects and
logical rules over these objects. It represents a
world in which the basic design cycle is completed.
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Supervisor
kI I
Scenarios FEM Model
Intelligent /
User Application Geometric
Interface Interface Model
— IDDL Language I
| | Dynamics
Knowledge Model

Base

Database

J

Fig. 17. Configuration of IIICAD

Semantically, a scenario represents a class of ob-
jects and its design. Thus, starting a scenario means
starting a design and getting out of the scenario suc-
cessfully means success of the design. When a sce-
nario executes, it leaves objects in the database.
Calling subscenarios means executing design sub-
processes. A scenario corresponds also to a (model-
ing) view. By entering a scenario, it fetches a set of
relevant objects and creates a world in which only
relevant relationships among these objects can be
seen.

In order to preserve or to see the solution of

System Browser

execution of scenarios easily, we use the concept of
worlds. A world is a partition in the database, such
that worlds are independent from each other, but
can be linked so that changes in one world can prop-
agate to others. There must be always at least one
world that is active in the database. Scenarios are
executed on the active world. A world consists of
objects, facts, and attributes of the objects. IDDL
employs modality (namely the possibility and ne-
cessity operators) and default reasoning in the form
of the default operator. These operators are used to
describe design processes more flexibly and to con-
trol executions of scenarios.

IDDL is, in principle, an object-oriented lan-
guage in that objects send and receive messages to
represent local, dynamic behaviors as function call-
ings. The global, static behaviors of objects are de-
scribed as relationships, i.e., as predicates. (In this
sense IDDL is a combination between the object
oriented and logic programming paradigms.) In the
design process, we not only want to determine rela-
tions among objects, but we also want to directly
operate on design objects. Functions are used for
this purpose.

Figure 18 shows a screen from an experimental
version of IDDL. We used Smalltalk-80 for the im-

15 October 1988 IDDL File List

; 12 p
A Files-Unix IDDLAnimation selector2 accessing | ------------ 11_ . ‘1 Design Browser
ompiler-general [IDDLBrowser I selection2 accessing [ text 1 10, .2
IDDL-DataStructures IDDLContradictionBrowser | world function textMenu g. .3 Workspacel}
#4421 IDDL-FileList IDDLContradictionControllg world accessing | --=-===----- \\
% IDDL-function IDDLContradictionView text function 8’ ‘4 T v, L7
ol IDDL=IRterface | IDDLHaltBrowser [ text accassing 7 25 System Transcriptf 743
%3 IDDL-method IDDLHaI(Co——“B—l choice function 6 B
IDDL-scenario IDDLHaltvig!POL Browser|| choice accessing ST
IDDL-selection IDDLView [=-==--=----- Feo---———oo——o e s 2
IDDL-test StandardID| Gear bearingFitting[Bearing,Link,Ba| cosmosWorld base
‘< IDDL-world StandardID|Robot contactSpurGear[{Gear1,Gearf fixationWorld Jearth
| Figure-Dictionary StandardID| Winch contactWormGear[Gear1,Geal robotWorld hole1
/| Design-browser | ----mmmmed cmmmmmeeoe fitting[Base,Earth] rotationWorld hole2
7] Interfase-Cao-Xue = makeFixation[Base,Earth1 Y slidingWorld screw
Window-Test instance makeRotation[Link,Base] systemDatabase = |----------o-
makeSliding[Arm,Link] | ------------
text root
self screwing[Screw,Base,Earth]
selectTextWithCategory: cate twofreedomRobotDesign
meta: meta | TTTTTTTTTTTT
selector: selector. scenario " function object " predicate
Trext
makeFixation[Base Earth] SystemName: basicObject4
BEGIN
makeObject(BasicObject, screw), attributeName: width
% select(fitting, Base, Earth), attributeValue: 10
select(screwing, screw, Base, Earth),
=(length[Base], 20), attributeName: length
¢ =(width[Base], 10), attributeValue: 20
e =(length[Earth], 20), 5
i =(width[Earth], 10), attributeName: innerR
END attributeValue: §
attributeName: x
attributevalue: 0
attributeName: y
attributeValue: 0

Fig. 18. IDDL browser
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Fig. 19. Phenomenon

modeler

plementation of IDDL, because objects in Smalltalk
consist not only of procedures but also of data, so
we can easily make design process and design ob-
jects. In addition, Smalltalk has an excellent user
interface environment and interactive graphics en-
vironment.

5.2 Phenomenon Modeler

We implemented another system to illustrate our
concepts of metamodels. The system intends to
provide an environment in which qualitative repre-
sentation is available to describe behaviors of de-
sign objects and models are constructed for particu-
lar viewpoints. Figure 19 shows the configuration of
the system. The designer creates a metamodel in
which he describes behaviors intended for the de-
sign object. Descriptions in a metamodel and
models derived from the metamodel have causal de-
pendency whose consistency is maintained by the
system using a dependency network.

A metamodel consists of meta-individuals and
meta-processes. A meta-individual is a collection of

descriptions about existing entities; each descrip-
tion denotes a behavior seen from a particular view-
point. Let us look back at the example in Section
3.2, that the cam is considered from the kinematics
view as an object changing its height, although from
the dynamics view it is an object applying force to
its follower. In our metamodel theory, the cam is
represented by a meta-individual which includes
both the kinematics and dynamics aspects. Each of
them describes how the cam behaves from the view-
point concerned. A meta-process is also a collection
of view-dependent effects on meta-individuals.
Meta-individuals and meta-processes are interview-
points descriptions of phenomena, hence they are
on a meta level of individuals and processes.
Models are generated in each view with data de-
rived from the metamodel. A view consists of rele-
vant individuals and processes. A view gets rele-
vant descriptions from the metamodel and puts all
applicable local individuals and processes together
to form a model. For example, suppose a cam is
rotating and we are interested in the dynamics point
of view (Fig. 20). Descriptions about dynamics, in-
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Fig. 20. A rotating cam in the metamodel

cluded in relevant meta-individuals and meta-pro-
cesses, are sent to the dynamics view as soon as
they appear in the metamodel. On the other hand, in
the dynamics view, design knowledge (laws for a
rotating cam) is instantiated, since it is found appli-
cable to the current situation, and a dynamics
model is composed from it.

This mechanism provides the functionality to
generate an appropriate model from the metamodel
at the time when the phenomenon the model repre-
sents as abstraction is recognized to occur. There-
fore, there is no need for the designer to predict and
prepare descriptions all about what is actually going
to happen in a given situation. Rather, the system
itself predicts with its knowledge phenomena and
builds necessary models for evaluation.

The system is currently implemented in
Smalltalk-80. It is a prototype of the metamodel
mechanism and expected to become an object rep-
resentation tool for our intelligent CAD system.

6 Conclusion

Designing is an intelligent activity of human beings,
therefore tools for designing also must be intelligent
to stimulate creativity and to serve as good assis-
tants for designers. However, the simple question
of how a designer actually thinks, decides, and in-
novates has yet to be understood. We believe that a
good understanding about designing will result in
useful tools for designers. Hence we started by for-
malizing designing, and then advanced into devel-
oping a CAD system guided by theories.

We introduced General Design Theory, a mathe-
matical model of design. From the theory we de-
duced a new modeling framework for design objects
called metamodel. According to the metamodel the-
ory, a design object evolves over the design pro-
cess, at the same time it is modeled from multiple
points of view. This process, the evolutionary de-
sign process model, must be supported in future
intelligent CAD environments. The metamodel con-
cept has three functions—first as a central model to
integrated models, second as a mechanism to model
physical phenomena, and third as a tool to describe
evolving design objects.

We illustrated our ideas to realize metamodels in
the first and second functions based on naive phys-
ics. Modeling with multiple points of view is real-
ized by representing physical phenomena that occur
on the design object and by constructing models
with knowledge in physics and design from the me-
tamodel. Naive physics is suitable for representing
qualitative behaviors and naive knowledge for this
purpose.

Results of design experiments supports the third
meaning of the metamodel. An evolution process
can be represented by modal logic with two modal
symbols denoting necessity and possibility respec-
tively.

We presented two systems to see how the meta-
model mechanism can be implemented. IDDL is a
design language capable of representing knowledge
about both design objects and processes in multiple
worlds. The evolutionary design process model was
represented in IDDL using scenarios. We have
shown another system for designing qualitative be-
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haviors and for deriving models using knowledge
relevant to a particular viewpoint. This system
demonstrated more directly how the metamodel
mechanism can be realized.
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