
Development of A Cheap On-board Vision Mobile Robot

for Robotic Soccer Research

T. Nakamura∗ K. Terada A. Shibata
J. Morimoto H. Adachi H. Takeda

Nara Institute of Science and Technology Dept. of Information Systems
8916-5, Takayama-cho, Ikoma, Nara 630-01, Japan

∗E-mail:takayuki@is.aist-nara.ac.jp

Abstract

To promote robotic soccer research, we need a low
cost and portable robot with some sensors and a com-
munication device. To date, there is no platform for
robotic soccer. Therefore, each researcher must build
his own robots or utilize robots which are commercially
available. This paper describes how to construct a robot
system which includes a lightweight and low cost mobile
robot with visual, tactile sensors, TCP/IP communica-
tion device, and portable PC where Linux is running.
An example of the developed soccer robot system and
preliminary experimental results are also shown.
Keywords: Soccer Robot, Portable PC, Linux

1 Introduction

Robotic soccer is a new common task for artificial in-
telligence (AI) and robotics research[1, 2]. The robotic
soccer provides a good testbed for evaluation of various
theories, algorithms, and agent architectures. Through
the research for accomplishing this task, a number of
technical breakthroughs for AI and robotics are expected
to be discovered.

So far, many researchers have been studying robotic
soccer and have proposed a variety of theories and meth-
ods for controlling, planning and so on. They built a
team of robotic platforms for playing soccer by them-
selves, or purchased robotic platforms (for example, [3]).
There is no standard robotic platform design for robot
soccer. Generally, contemporary robotic systems in-
volve large amounts of expensive, special purpose hard-
ware for motor control and image processing. If many
researchers can easily utilize good robotics platform in
point of low cost and easy operation, it would contribute
to the promotion of the research.

In this paper, we describe how to construct a cheap
on-board vision mobile robot and its control system
mainly made from a state-of-the-art portable PC and a
battery-powered R/C model car. Since recent portable
PC is affordable and powerful, such a PC is used as
a central controller which manages processing sensor
information, controlling motor and communication be-
tween the robots. As a chassis of the mobile robot, a

4-wheel drive, R/C model car is utilized. The impor-
tant feature of our robot is that this platform has all its
essential capabilities on board. Our platform consists
of driving, visual sensing, tactile sensing, motor con-
trol, communication and decision-making system. Since
each system is made of devices commercially obtainable,
we can reduce both of the cost and complexity of the
system. According to our design principle for soccer
robot system, those who are interested in the robotic
soccer would easily utilize or build this robotic plat-
form by themselves. To evaluate the developed system,
we have implemented some behavior for playing soccer
and visual segmentation and tracking algorithms based
on color information. Preliminary experimental results
are also shown.

2 Our Hardware Architecture

In order that our soccer robots are used by not only
roboticists but also researchers in other research com-
munities, our soccer robots should be easily manageable.
Furthermore, in order that our robot system satisfies the
requirements of a standard platforms, it is important to
reduce the cost and time for building our robot system.
To address this issue, we use a portable PC as a central
controller of robot system which is recently affordable
and powerful.

2.1 Driving System

As a chassis of the mobile robot, we utilize a 4-
wheel drive, R/C model car which is commercially avail-
able. Actually, we utilize a chassis of “BLACK BEAST”
(NIKKOH 1) (See Fig.1). This chassis is composed
of a PWS (Power Wheeled Steering) system with two
independent motors. Because of this mechanical struc-
ture, our robot can rotate at the same place. This sys-
tem is useful for avoiding the situation that its body
gets stuck into corners. Existing motors provided by
NIKKOH are comparatively powerful. However, if we
put something whose weight is more than 4 Kg on the

1 NIKKOH is a Japanese toy company. BLACK BEAST is also
commercially available outside of Japan.

existing chassis, the body can’t move around by those
motors. In such case, we have to change existing motors
to high-torque motors (for example, TAMIYA RS-540
Sport Tuned Motor). As a result, even if we put some-
thing whose weight is about 4kg on our robot, our robot
can move around.

Figure 1: Our driving system.

2.2 Visual Sensing System

Our robotic soccer project aims the development of
robotic soccer players with on-board visual sensor like
human soccer players. So, a visual sensing system in our
soccer robot plays a fundamental role in acquiring visual
information and recognizing it. Our soccer robots make
a pass or tackle and shoot a ball into a goal based on
the images taken by the on-board camera. In order to
build such visual sensing system, we have chosen to use
a commercial video capture PCMCIA card (IBM Smart
Capture Card II, hereafter SCCII) which can be easily
plugged into a portable PC and a color CCD camera
(SONY EVI D30, hereafter EVI-D30) which has a mo-
torized pan-tilt unit. Our visual sensing system consists
of SCCII and EVI-D30.

SCCII is a PCMCIA type-II video capture card which
can capture at 30 frame-per-second at maximum reso-
lution 320-by-240 in 16-bit RGB formats . We can feed
video to SCCII in NTSC or PAL format, and the card
provides jacks for both composite-video and S-Video in-
put. A device driver for the use of SCCII on Linux OS
is distributed as a free software. We utilize this device
driver in order to capture images on Linux OS.

EVI-D30 is a high-performance color CCD camera,
because it has auto target tracking function based on
color information and motion detection function. We
can control eyes of EVI-D30 with a motorized pan-tilt
device which can be managed by a portable PC through
RS232C. The pan and tilt angle of this device ranges
from −100 to +100 and from −25 to +25, respectively.
In this way, this camera can cover wide field of view.
Since our soccer robot has such sensing capability, our
robot can find a ball by moving its camera head without
moving its body.

2.3 Tactile Sensing System

A tactile sensing system is used for detecting contact
with the other objects such as a ball, teammates, op-
ponents and a wall. It is also important to have tactile
sensing capability in the soccer robots, because soccer
robots frequently collide with each other, walls or a ball

in a soccer field. Furthermore, tactile sensing system
can compensates for limitation of visual sensing. Since
the field of view of the camera mounted on the robot
is limited, if collision between robots or between robot
and wall or ball occurs on the outside of the field of
view, it is difficult to detect these happenings based on
the image information. Tactile sensing system where
tactile sensors are set around the body of soccer robot
is very useful for solving this problem. Since the cost
of producing a tactile sensing system is generally high,
this prevents it being used widely.

Here, we construct a cheap tactile sensing system
(See Fig.2) by remodeling a keyboard which is usually
used as an input device for PC. A keyboard consists of a
set of tactile sensors each of which is a ON/OFF switch
called a key. If a key is pressed, the switch is ON. If
not, the switch is OFF. Since we can get a keyboard at
a low price, it is possible to construct this tactile sensing
system for soccer robots at a low cost.

If a tactile sensor (key) hits an object such as a ball or
an opponent, the sensor outputs an ASCII code corre-
sponding to the key. In case several sensors have contact
with the other object, an output of this sensing system
is a sequence of ASCII codes.

Figure 2: Our tactile sensors by utilizing a key board.

2.4 Motor Control System

A motor control system is used for driving two DC
motors and is actually an interface board between a
portable PC and motors on the chassis of our soccer
robot (see Fig.3). This control board is plugged into a
parallel port on the portable PC. Our motor control sys-
tem manages only the direction of current to a DC mo-
tor. The control circuit in this board consists of mainly
4 relays in terms of one motor (see Fig.3). These relays
are used as just like an ON/OFF switch and for control-
ling the direction of current. This board is powered by
a 7.2 V battery for a R/C model car. As a result, this
board can sends three control commands to right and
left motors such as “(Forward, Stop, Backward)”. The
motor control command is actually 2 bits binary com-
mands for one motor. Therefore, totally 4 bits (D0
D1 or D2 D3 in Fig.3) in the parallel port are used
for transmitting motor commands to the control board.

Since we can send the motor control command to each
of the two motors separately, our soccer robot has 3 sub-
action primitives, forward, stop and backward in term
of one motor. All together, our soccer robot can take 9
action primitives.

Figure 3: Our motor drive board.

In the future, this motor control system must be im-
proved because more precise motion will be required so
as to control our soccer robot in sophisticated way.

2.5 Communication System

In the soccer game, teammates need to communicate
each other for accomplishing a given task in cooperative
manner. So, we set a wireless LAN device for communi-
cation on our soccer robot. The wireless LAN device is
actually WaveLAN(AT&T) which can be plugged into a
portable PC. The system operates in 2.4GHz frequency
band. The rate of transmitting data is 2Mbps. The
maximum transmission range will reach several hundred
meters when there is a clear line of sight between the
transmitter and receiver.

2.6 Intelligent Control System

We call a central controller for processing sensor in-
formation and controlling the body of mobile robot and
camera “intelligent control system”. The intelligent con-
trol system consists of software, programming environ-
ment and OS. In order to adopt an OS as the central
manager of robotic system, the OS should have some
characteristics as follows:(1) It is possible to run multi-
ple independent processes. (2) It is possible to make a
process abort or wait for running again. (3) The system
provides mechanisms for simple and high-speed process
synchronization and communication.

In this work, we have chosen to use Linux OS as
an OS for intelligent control system. Linux is a freely-
distributable, independent UNIX-like OS. Much of the
software available for Linux is developed by the Free
Software Foundation’s GNU project. It supports a wide
range of software, including X Windows, Emacs, TCP/IP
networking (including SLIP/PPP/ISDN). The Linux IPC
(Inter-process communication) facilities provide a method
for multiple processes to communicate with one another.

Linux has become a cost-effective alternative to expen-
sive UNIX systems. Linux is being used today by hun-
dreds of thousands of people all over the world.

We cannot guarantee user-mode processes to have ex-
act control of timing because of the multi-tasking nature
of Linux. Our process might be scheduled out at any
time for anything from about 10 milliseconds to a few
seconds (on a system with very high load). However, for
most applications in RoboCup competition so far, this
does not seem to really matter. If we want more precise
timing than normal user-mode processes, there is a spe-
cial kernel RT-Linux that supports hard real time(see
[4] for more information on this.).

2.7 System Configuration of Our Soccer Robot

Currently, we have developed a vision-based mobile
robot for robotics soccer as shown in Fig.4. As a portable
PC, we have chosen to use a Libretto 60 (Toshiba) which
is small and light-weight PC. The total cost of this soc-
cer robot is about $ 4,800.

Libretto 60 /32M

parallel port serial port

WaveLAN
/PCMCIA

SONY EVI D30

NIKKO
BLACK BEAST

Motor Driver
Board

IBM Smart
Capture Card II

Tactile sensors

k
ey

b
o

ard
 p

o
rt

(a) (b)

Figure 4: Our soccer robot.

3 Our Software Architecture

In order to control our hardware systems, we use a
shared memory [5] and 5 software components which are
the motor controller, camera controller, tactile sensor
module, vision module and behavior generator. Fig.5
shows an interactions between these software compo-
nents. Note that this figure shows the software archi-
tecture of our current robotic soccer system. All soft-
ware components read and write the same shared mem-
ory. Using this shared memory, they can communicates
each other unsynchronously. We define the structure of
the shared memory as shown in Fig.5. The behavior
generator takes the state of camera, vision, tactile and
motor in the shared memory as input vectors. Then, it
combines these information with programmer’s knowl-
edge and decides the robot’s action at next time step.
Finally, it writes the motor command for the motor con-
troller on the shared memory. In the same way, other
software components read states and write commands
in each timing.

Shared MemoryShared Memory

Vision:

 image data;

 ball(x,y,area,position);

 goal(x,y,area,position);

Tactile sensor:Tactile sensor:

 key; key;

Motor command:Motor command:

 action; action;

Camera:Camera:

 pan; pan;

 tilt; tilt;

Motor ControllerMotor Controller

Vision ModuleVision Module

Tactile SensorTactile Sensor
 Module Module

Behavior GenerationBehavior Generation
 Module Module

Camera ControllerCamera Controller

CommunicationCommunication
 Controller Controller

State:State:

Command:Command:

Camera: pan; tilt;Camera: pan; tilt;

Motor command: action;Motor command: action;

Figure 5: Software architecture.

3.1 Motor Controller

We assume that a motor command is defined by an
action primitive and its duration. In our robotic system,
an action consists of a combination of 4 action primitives
(move forward, backward, turn left, and turn right) and
4 kinds of the duration (100msec, 150msec, 200msec,
300msec). Furthermore, we add one action for kicking a
ball strongly to the actions. This action is produced by a
combination of “move forward” and 500msec duration.
Totally, our mobile robots can take 17 actions.

Motor controller module reads the command from
the shared memory every 100msec. If there is a com-
mand, it execute the command and rewrite the executed
command as the state of motor.

3.2 Camera Controller

We can control the on-board camera (SONY EVI-
D30) through RS232C with the VISCA protocol pro-
vided by Sony Corp. Using VISCA, we can control
the pan and tilt angle, the focal length of the camera
and take its focus. Furthermore, we can turn on and
off the camera through this protocol. In robotic soccer
task, panning the camera is important action for track-
ing the objects such as a ball, a goal, teammates and
opponents. Since the soccer robots frequently lose the
ball in the field, they must find the ball again as soon
as possible. We think panning the camera is very useful
in order to realize the procedure for finding a ball called
“finding behavior”. We implement the finding behavior
as follows:

repeat
Read the state of ball from the shared memory
Make the camera rotate by 30
until the ball is in view

3.3 Tactile Sensor Module

Our tactile sensor system is actually a keyboard. There-
fore, an output of the sensor system is an ASCII code
corresponding to the key. We can get this ASCII code
via X Event [6] which is a library function of X11 for
detecting all events in X Window system. Our tactile
sensor module maintains a table of ASCII codes and
the configuration of tactile sensors. Each tactile sen-
sor is numbered 1 to 32 so that the left front of tactile
sensor unit might be numbered 1 and the right back 32.

In case a sensor have contact with an object, the sen-
sor module can detect which sensor have contact with
the object using the table that shows corresponding be-
tween ASCII codes and the index number of tactile sen-
sors. Then, the tactile sensor module rewrites the index
number of the detected sensor as the state of the tactile
sensor system on the shared memory.

3.4 Vision Module

The vision module provides the information about
the ball and goal in the image. To deal with robotics
soccer task, our robots have to discriminate a ball, goals,
white lines, teammates and opponents. To date, in
RoboCup competition, each soccer robot tried to dis-
criminate such objects based on color information. In
our study, we also use color information for segment-
ing and tracking objects. On the vision module, we can
make any programs for a color image segmentation and
tacking which the programmer wants to perform. As
an example of such image processing program, we in-
troduce the following procedures. First, we construct
color models of objects which will appear in perceived
images. Using this color models, our robots segment
a color image into several regions which correspond to
some objects. After the color segmentation, we calcu-
late the coordinates of the center of ball and goal posi-
tion, and the both maximum and minimum horizontal
coordinates of the goal and so on. (See Fig.5.) Then,
based on segmented regions, our robots perform visual
tracking. Our vision module also discriminates in which
position center of ball or goal appears among three po-
sitions (right, center and left of an image).

3.4.1 Construction of Color Model for Segmen-
tation

In order to make initial color models for some objects,
we use the competitive learning algorithm called rival
penalized competitive learning (RPCL) [7] which can au-
tomatically find out the number of classes in the sample
data. After this learning, we use discovered classes as
color models for objects. We briefly explain the proce-
dure of RPCL according to [7]. RPCL algorithm repeats
the following two steps until the prototype vectors con-
verge on constant vectors.

STEP1: Randomly take a sample x = (x1, x2, · · · , xk)
from a data set. Let wi = (wi1, wi2, · · · , wik) be a pro-
totype vector (i = 1 ∼, N). Then, calculate a parameter

ui defined as follows:

ui =

1, if i = c such that
γcd(x, wc) = minj γjd(x, wj)

−1, if i = r such that
γrd(x, wr) = minj 6=c γjd(x, wj)

0, otherwise.

where γj = nj/
∑k

i=1 ni and ni is the cumulative num-
ber of the occurrences of ui = 1. d(x, w) denotes a
distance between x and w. Generally, d(x, wi) = ||x−
wi||2 =

∑k
j=1 |xj − wij |2. Moreover, wc and wr de-

note the winner vector which wins the competition for
adapting to the input vector and the second winner vec-
tor called “rival”, respectively.

STEP2:Update the prototype vector wi by

∆wi =

αc(x−wi) ifui = 1
−αr(x−wi) ifui = −1
0 otherwise.

where 0 ≤ αc, αr ≤ 1 are the learning rates for the
winner and rival vector, respectively.

Fig. 6 shows examples of an image captured by
SCCII and segmented image based on our method. Al-
though the size of a captured image is 320× 240 pixels,
we shrink it so as to reduce computational cost of CPU
on a portable PC. Actually, the size of a processed image
is 80×60 pixels. As shown in Fig. 6 (b), our color seg-
mentation algorithm succeeds in extracting a red ball, a
yellow goal, green field (ground), white line, and white
wall. Currently, it takes about 230 msec (about 4Hz)
for one cycle of this procedure in case N = 57.

(a) (b)

Figure 6: A example of processed images taken by the
robots

3.4.2 Simple Color-Based Tracking

Our simple tracking method is based on tracking regions
with similar color information from frame to frame. We
assume the existence of the color models (CMball, CMgoal)
for tracking targets, which are estimated at initializa-
tion. We use 3-dimensional normal distribution model
of object’s RGB value (Cball and Cgoal) as (CMball and
CMgoal). Actually, these models are represented by el-
lipsoids. Each ellipsoid can be described

CMtarget : (C −Ctarget)T ∑−1
target(C −Ctarget) = k

(1)

where, Ctarget is prototype vector RGB value for a tar-
get and

∑
is its covariance matrix. These can be com-

puted at initial estimation process. Now, let p∗ be a
probability that a sample data C which is RGB value
at a pixel is included in this ellipsoid. Since the left side
of Eq. 1 obeys chi-square (χ2) distribution for three
degree of freedom, generally, we can compute this prob-
ability function using the incomplete gamma function.
Therefore, if we set p∗ to be a value, we can determine
k in Eq. 1.

We define a fitness function Φtarget(x, y) at a pixel
(x, y) as a criterion for extracting a target region in the
image,

Φtarget(x, y) =
{

1 C(x, y) ∈ CM target

0 Otherwise

,where C(x, y) and CM target show a RGB value at
(x, y) and a color model for a target represented by an el-
lipsoid, respectively. In our current implementation, we
set p∗ = 0.9. Based on Φtarget(x, y), the best estimate
(x̂target, ŷtarget) for the target’s location is calculated as
follows:

x̂target =

∑
(xi,yi)∈R xiΦtarget(xi, yi)∑
(xi,yi)∈R Φtarget(xi, yi)

,

ŷtarget =

∑
(xi,yi)∈R yiΦtarget(xi, yi)∑
(xi,yi)∈R Φtarget(xi, yi)

,

where R shows the search area. Initially, R implies an
entire image plane. After initial estimation for the loca-
tion of the target, we can know the standard deviations
σ(x̂target) and σ(ŷtarget) regarding (x̂target, ŷtarget). There-
fore, based on the deviations, R is restricted to a local
region during the tracking process as follows:

R : {(x, y)|
x̂target − 2.5σ(x̂target) ≤ x ≤ x̂target + 2.5σ(x̂target),
ŷtarget − 2.5σ(ŷtarget) ≤ y ≤ ŷtarget + 2.5σ(ŷtarget)}.∑

(xi,yi)∈R Φtarget(xi, yi) shows the area of the target in
the image. Based on this value, we judge the appearance
of the target. If this value is lower than the pre-defined
threshold, the target is considered to be lost, then R is
set to be the entire image plane for estimation at next
time step. We set this threshold for the target area
= 0.05 ∗ S, where S shows the area of the entire image.
This process helps to reduce the computational cost for
extracting regions with similar color.

3.5 Behavior generator

The behavior generator decides the robot’s behavior
such as avoiding a wall (called avoiding behavior) or
shooting a ball into a goal (called shooting behavior).

3.5.1 Avoiding behavior

We implemented avoiding behavior so that the robot
might avoid a wall using tactile sensors. We divided 32

tactile sensors into 4 groups ;
a(1 · · ·8): left front, b(9 · · ·16): right front,
c(17 · · ·24):left back, d(25 · · ·32):light back

Avoiding behavior is implemented as follows:

Read the state of tactile sensor
from the shared memory
switch(position)

a: move backward and turn right
b: move backward and turn left
c: move forward and turn right
d: move forward and turn left

This behavior has top priority over all other behav-
iors. As a result, whenever the robot collides with an
object, it always avoids it.

3.5.2 Shooting behavior

Figure 7: Shooting behavior. (1):Approach the ball.
(2),(3),(4):Round the ball. (5),(6):Kick the ball.

We make a simple strategy for shooting the ball into
the goal. To shoot the ball to the goal, it is important
that the robot can see both ball and goal. Therefore,
the robot must round the ball until the robot can see
both ball and goal with the camera toward the ball. Fi-
nally, the robot kicks the ball strongly. Fig.7 shows the
shooting behavior. The concrete procedure of shooting
behavior is follows:

1)Find the ball
2)Approach the ball

While approaching the ball
if the area of the ball > 20 then stop

3)Round the ball

d ← the direction of the goal
switch(d)

right: clockwise round the ball
with the camera toward the ball

left: counterclockwise round the ball
with the camera toward the ball

if the robot can see both ball and goal then stop
4)Turn the body of the robot toward the ball
5)Kick the ball strongly

4 Discussion

In this paper, we described how to construct a cheap
on-board vision mobile robot system which consists of
mainly made from a state-of-the-art portable PC and
a battery-powered R/C model car. Since these compo-
nents are commercially available, we showed that we can
construct the total system at comparative low cost. Our
robot system might be used as a personal robot which
can be used at home since its price would be low and its
performance would be high. In order to evaluate this
robot system, we will investigate how fast image pro-
cessing can be realized on this system and how motion
control can be performed.

Now, we use this vision-based mobile robot as a stan-
dard platform for robotics soccer research. In the future,
we will aim to realize

• robust behavior based on sensor fusion between
visual and tactile information, and

• cooperative behavior with other robots.

References

[1] H. Kitano, M. Tambe, Peter Stone, and et.al. “The
RoboCup Synthetic Agent Challenge 97”. In Proc.
of The First International Workshop on RoboCup,
pages 45–50, 1997.

[2] M. Asada, Y. Kuniyoshi, A. Drogoul, and et.al.
“The RoboCup Physical Agent Challenge:Phase
I(Draft)”. In Proc. of The First International Work-
shop on RoboCup, pages 51–56, 1997.

[3] Inc. Nomadic Technologies.
http://www.robots.com/robotdiv.html.

[4] RT-Linux. http://luz.cs.nmt.edu/~rtlinux .

[5] W. Richard Stevens. UNIX NETWORK PRO-
GRAMMING. Prentice Hall, Inc., 1990.

[6] Adrian Nye. Xlib programming manual : for ver-
sion X11 of the X Window System, 3rd ed. O’Reilly,
1992.

[7] L. Xu, A. Krzyzak, and E. Oja. “Rival Penalized
Competitive Learning for Clustering Analysis, RBF
Net, and Curve Detection”. IEEE Trans. on Neural
Networks, 4:4:636–649, 1993.

