
Meta-Circularity and MOP in Common Lisp for OWL Full

Seiji Koide
∗

The Graduate University for Advanced Studies
(SOKENDAI)

2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo 101-8430

koide@nii.ac.jp

Hideaki Takeda
†

National Institute of Informatics and SOKENDAI
2-1-2 Hitotsubashi

Chiyoda-ku, Tokyo 101-8430

takeda@nii.ac.jp

ABSTRACT
We have developed an OWL (Web Ontology Language) Full
language processor, SWCLOS, for processing semantic web
pages on top of the Common Lisp Object System (CLOS).
To implement the OWL Full level of capability, we leveraged
the dynamic and reflective features of CLOS. The metamod-
eling capability of CLOS is utilized to realize the metamod-
eling capability of Resource Description Framework (RDF)
and OWL Full. The native computational model of CLOS
is changed into the model of RDF and OWL by using the
Meta-Object Protocol (MOP) in CLOS. Although the meta-
modeling specifications in CLOS are firmly established in
the Common Lisp community, the semantics is not yet fully
developed, since Common Lisp does not have formal seman-
tics. In this paper, we focus on metamodeling in CLOS. We
point out that the architecture of CLOS in the metamod-
eling is the same as in RDF and clarify the denotational
semantics of CLOS in comparison with the RDF semantics.
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1. INTRODUCTION
The Resource Description Framework (RDF) is a lan-

guage for representing information about resources in the
World Wide Web [8]. The special syntax in XML called
RDF/XML [1] and the model-theoretic semantics of RDF [3]
have been issued as W3C Recommendations. The RDF
Schema (RDFS) is a semantic extension of RDF that pro-
vides a minimal set for describing classes of objects in an
ontology [3]. The Web Ontology Language (OWL) is also
W3C Recommendation [9]. It is designed for represent-
ing the content of information as an ontology; it facilitates
greater machine interpretability of web content than is sup-
ported by XML, RDF, or RDFS, by providing additional
vocabulary along with formal semantics. OWL has three
increasingly expressive sublanguages: OWL Lite, OWL DL,
and OWL Full. The specifications of OWL Lite are consid-
erably restricted in order to facilitate easy implementation.
The computations and realization of OWL DL are under-
pinned by Description Logics (DLs), but the specifications
are more conditioned than those of OWL Full. OWL Full is
aimed at full compatibility with RDF.

The model theoretic RDF semantics is specified by deno-
tational semantics, and RDF allows for membership circular-
ity of the class extensions in the universe of discourse [3]. In
particular, the class extension of the denotation of rdfs:Class
in the RDFS vocabulary includes the denotation of rdfs:Class
itself, and this membership circularity has caused confusion
and even arguments in the OWL community, especially in
the OWL DL community [13, 14, 11], since such a member-
ship loop seems to violate the axiom of foundation, one of
the axioms of standard (Zermelo-Fraenkel) set theory.

On the other hand, in the Common Lisp Object Sys-
tem (CLOS), all Common Lisp objects, including classes,
are an instance of a class [4]. Hence, the class objects are
called metaobjects [2], and we also see metacircularity of
the class-instance at cl:standard-class in CLOS just like the
membership circularity at rdfs:Class in the RDF universe.
Therefore, there is no bewilderment in the Lisp community
with respect to the membership-loop. We previously imple-
mented an RDF and OWL Full language processor on top
of CLOS [6, 5, 7], through which we bridged the semantic
gap between CLOS and RDF or OWL Full by leveraging
the metamodeling capability of CLOS and using the Meta-
Object Protocol (MOP).

Although there are as yet no formal semantic specifica-
tions of Common Lisp and CLOS, it is obvious that a dis-
cussion of languages based on formal semantics is useful
to disambiguate the specifications of languages and help-
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ful for implementing language processors. In this paper, we
focus on the denotational semantics of metacircularity in
Common Lisp in comparison with those in RDF and OWL.
This paper revisits the type and subtype semantics of Com-
mon Lisp in the context of denotational and extensional se-
mantics and redefines metacircularity at cl:standard-class in
CLOS without the notions of methods or inheritance. The
discussion brings with it the new perspective of CLOS and
meta-programming in CLOS.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses the denotational semantics between RDF
and CLOS and points out the similarity of metacircularity
in each. The disambiguation for compound CLOS types
by the denotational semantics is also discussed. Section 3
demonstrates metamodeling in CLOS and OWL ontologies
and shows metamodeling disorders in several ontologies that
are regarded as standard. We address an idea of CLOS-clean
metamodeling. Section 4 extends the discussion to the re-
flective tower in metamodeling.

2. DENOTATIONAL SEMANTICS

2.1 Introduction of Denotational Semantics
In the denotational semantics of computer languages, it

is important to distinguish lexical components in syntactical
expressions from their denotations. While the expressions in
languages have certain structures (syntaxes), the meaning of
a component is recursively described by the sub-components
of the syntactical structure. For example, consider the fol-
lowing syntactic expression of ontology1.

ClassAssertion(a:Dog a:Brian)

ClassAssertion(a:Species a:Dog)

In these sentences, the meaning of each sentence is defined
by components ‘ClassAssertion’, ‘a:Dog’, ‘a:Brain’, ‘a:Species’
and the structures. The first sentence expresses that Brian
is a dog, and the second expresses that a dog is a species.
The token or word ‘a:Dog’ appears twice in two sentences,
but the first token denotes the dog as a class and the second
denotes the dog as an instance of species. In the RDF and
OWL Full semantics, these two sentences are interpreted as
follows.

a :BrianI ∈ CEXTI(a :DogI)

a :DogI ∈ CEXTI(a :SpeciesI)

Here, a :DogI represents the denotation of the token ‘a:Dog’,
and it is indicated through a mapping SI from lexical tokens
to entities in the universe of discourse.

a :BrianI = SI(a : Brian)

a :DogI = SI(a : Dog)

a :SpeciesI = SI(a : Species)

CEXTI(x) is called the class extension of x, and it repre-
sents a set of instances of x. Here, x is called a class.

2.2 Semantics in the RDF Universe
The RDF semantics is specified using the denotational

semantics that is based on model-theoretic semantics and

1This example is taken from http://www.w3.org/TR/owl2-
syntax/#Metamodeling.

first order logic with equality [3]. The RDF semantics is
described as follows with the RDF simple interpretation I
of vocabulary V.

1. A non-empty set RI of entities, called the domain or
universe of I.

2. A set P I , called the set of properties of I.

3. A mapping EXTI from P I into the powerset of RI ×
RI , i.e., the set of sets of pairs ⟨x, y⟩ with x and y in
RI .

4. A mapping SI from URI references in V into RI∪P I .

5. A mapping LI from typed literals in V into RI .

6. A distinguished subset LV of RI , called the set of
literal values, which contains all the plain literals in V.

Here, EXTI(p) is called the property extension of p, and it
represents a set of sets of pairs ⟨x, y⟩, where x and y are enti-
ties in the RDF universe. In other words, a property makes
a set of the binary relation between entities in the RDF uni-
verse. Note that the order of a pair ⟨x, y⟩ is important so
that ⟨x, y⟩ must be distinguished from ⟨y, x⟩.

The notion of property is introduced with rdf:Property
and rdf:type in rdf vocabulary as follows.

Axiom 1. If an entity is a member of the set of properties
of I, then the entity makes a pair with rdf :PropertyI and
the pair is a member of property extension of rdf : typeI ,
and vice versa:

x ∈ P I iff ⟨x, rdf :PropertyI⟩ ∈ EXTI(rdf : typeI)

A particular pair of ⟨x, y⟩ for property p is also called a triple
in infix notation or x p y. In this context, x is called subject,
y is called object, and p is called predicate. A set of triples is
called an RDF graph in Semantic Web. An RDF graph may
include blank nodes. A blank node has no URI reference and
may be designated by a nodeID instead of a URI reference.
An RDF graph that does not include blank nodes is called
a ground graph. The denotation of a ground RDF graph in
I is given recursively by the semantic conditions for ground
triples in RDF semantics, and the semantics of ungrounded
graphs is extended from the ground graphs. (See [3] for
details.)

The notion of class-instance is introduced as an rdfs-extension
of the RDF universe. For rdfs-vocabulary, i.e., rdfs:Class,
rdfs:Resource, rdfs:subClassOf, etc., in V, rdfs-interpretation
satisfies the extra conditions for RDFS [3]. In the following
axiom and definitions, CI represents a class extension of
the denotation of rdfs:Class in the RDF universe, and RI ,
which is initially defined as the universe of discourse in the
rdf simple interpretation, is realized as a class extension of
the denotation of rdfs:Resource.

Axiom 2. If an entity is a member of class extension of
another entity, then a pair of both becomes a member of
property extension of rdf : type, and vice versa.

x ∈ CEXTI(y) iff ⟨x, y⟩ ∈ EXTI(rdf : typeI)

This axiom displays the semantics of the class and instance.
Here, x is called an instance of class y, and the class-instance
relation is expressed through the property rdf:type.
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We define several classes and their extensions of rdfs-
vocabulary in the RDF universe as follows.

CI = CEXTI(rdfs :ClassI)

DCI = CEXTI(rdfs :DatatypeI)

RI = CEXTI(rdfs :ResourceI)

LV = CEXTI(rdfs :LiteralI)

The class-superclass relation in the RDF universe is spec-
ified with the property rdfs:subClassOf as the inclusiveness
of the class extensions of class and its superclass as follows.

Axiom 3. If a pair of two entities is a member of prop-
erty extensions of rdfs :subClassOf I , then the both entities
are instances of rdfs :ClassI and the class extension of the
predecessor in the pair is included by the class extension of
the successor.

⟨x, y⟩ ∈ EXTI(rdfs :subClassOf I) ⇒
x, y ∈ CI ∧ CEXTI(x) ⊆ CEXTI(y)

Namely, the class extension of a subclass x is included by
the class extension of its superclass y. This is called sub-
sumption. Thus, every instance of class x is also an instance
of the superclass y.

The property rdfs:subClassOf in rdfs-vocabulary is tran-
sitive and reflexive on the property extension.

⟨x, y⟩ ∈ EXTI(rdfs :subClassOf I) ∧
⟨y, z⟩ ∈ EXTI(rdfs :subClassOf I)

⇒ ⟨x, z⟩ ∈ EXTI(rdfs :subClassOf I)

x ∈ CI ⇒ ⟨x, x⟩ ∈ EXTI(rdfs :subClassOf I)

Furthermore, the final axiom with respect to an instance
of rdfs:Class is introduced as follows.

Axiom 4. Every instance of rdfs :ClassI is a subclass of
rdfs :ResourceI .

x ∈ CI ⇒ ⟨x, rdfs :ResourceI⟩ ∈ EXTI(rdfs :subClassOf I)

2.3 Meta-Circularity of rdfs:Class
Here, let us introduce a new symbol ⊑ to simplify the

description of rdfs:subClassOf relation.

⟨x, y⟩ ∈ EXTI(rdfs :subClassOf I) → x ⊑ y

Then, the last two axioms on subsumption of rdfs:subClassOf
are rephrased as follows.

x ∈ CI ⇒ x ⊑ rdfs :ResourceI (1)

x ⊑ y ⇒ x, y ∈ CI ∧ CEXT I(x) ⊆ CEXT I(y) (2)

Axiom (1) means every class that is an instance of the
denotation of rdfs:Class is a subclass of the denotation of
rdfs:Resource. Axiom (2) means any class in rdfs:subClassOf
relation is an instance of the denotation rdfs:Class.

Hence, axiom (1) and (2) lead to the following lemma in
the combination.

Lemma 1.

x ⊑ rdfs :ResourceI ⇔ x ∈ CI (3)

Namely, any subclass of rdfs:Resource is an instance of (the
denotation of) rdfs:Class or a member of the class extension
of (the denotation of) rdfs:Class.

Let us set an intuitively true axiom for the RDF universe
in order to discuss the metacircularity in the RDF universe.

Axiom 5. rdfs :ResourceI is a superclass of every class
in the RDF universe, including the denotation of rdfs:Class,
because rdfs :ResourceI is the top class in the RDF universe
and the denotation of rdfs:Class is in the RDF universe:

rdfs :ClassI ⊑ rdfs :ResourceI (4)

Thus, we can obtain metacircularity of rdfs:Class by re-
placing x in (3) with rdfs:Class as follows.

Lemma 2. If rdfs :ClassI is in the RDF universe and a
subclass of rdfs :ResourceI , then a membership loop occurs
in rdfs:ClassI .

rdfs :ClassI ⊑ rdfs :ResourceI ⇔ rdfs :ClassI ∈ CI (5)

Conversely, if we set the membership loop of rdfs:Class,
lemma (5) produces rdfs:Class as a subclass of rdfs:Resource.
In a nutshell, the membership loop of rdfs:Class is equivalent
to the subsumption of rdfs:Class into rdfs:Resource under
axioms (1) and (2).

We often call rdfs:Class a ‘universal’ class, of which the
extension contains all classes, including itself, in the domain,
and call rdfs:Resource the top class, which takes its place at
the top of all classes, including the universal class, in the
class-superclass or subsumption hierarchy.

Let us call the specialized consequent of (2) for rdfs:Class
and rdfs:Resource a twisted relation of the universal class
and top class.

rdfs :ResourceI ∈ CI∧rdfs :ClassI ⊑ rdfs :ResourceI (6)

In this case, every class in the domain is an instance of
the ‘universal’ class, and every class which is an instance of
‘universal’ class belongs to the domain. If the membership
loop is admitted into a ‘universal’ class, the ‘universal’ class
also belongs to the domain. Thus, we can regard the domain
as closed by the universal class and the top class.

2.4 Mapping CLOS to RDF
Regarding the class-instance and the class-superclass re-

lations, the semantics of these relations in CLOS are the
same as membership and subsumption in the RDF universe.
Therefore, by capturing CLOS objects as entities in the RDF
universe, we can map the class-instance relation in CLOS to
an rdf:type relation in RDF semantics and a class-superclass
relation in CLOS to rdfs:subClassOf relation in RDF seman-
tics, and vice versa. Note that CLOS retains the transitive
and reflexive properties of the class-superclass relation.

Note that the relationship between cl:standard-class and
cl:standard-object is the same as the relationship between
rdfs:Class and rdfs:Resource in the RDF specification. That
is, cl:standard-class is the universal class and cl:standard-
object is the top class in CLOS. Therefore, the topological
structure of the twisted relationship of cl:standard-class and
cl:standard-object forms the domain of CLOS objects.

cl:standard-objectI ∈ CEXTI(cl:standard-classI) ∧
cl:standard-classI ⊑ cl:standard-objectI (7)
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t standard-object metaobject
method standard-methodmethod-combinationslot-definitionspecializereql-specializer class built-in-classforward-referenced-classstandard-class

funcallable-standard-class
Figure 1: Part of the Class Hierarchy in CLOS.

Figure 2: The Twisted Relationship of rdfs:Class
and rdfs:Resource in CLOS.

Furthermore, mop:metaobject, mop:specializer, and cl:class
create sub-domains inside the CLOS object domain, be-
cause they also make twisted relationships with respect to
cl:standard-class. Figure 1 shows part of the class hierar-
chy of CLOS [4]. Every entity in the figure except t is an
instance of cl:standard-class.

To form the RDF universe in CLOS objects, we imple-
mented the twisted relationship of rdfs:Class and rdfs:Resource
under the twisted relationship of cl:standard-class and cl:standard-
object as shown in Figure 2. However, we needed a trick
to implement the membership loop for rdfs:Class in CLOS,
because CLOS inhibits any direct and indirect membership
loops except cl:standard-class. SWCLOS users are recom-
mended to use gx:typep instead of cl:typep. The function-
ality of gx:typep is almost the same as that of cl:typep, but
it pretends that there is metacircularity in rdfs:Class.

2.5 Disjointness and Compound Type Speci-
fiers in CLOS

In the specification of ANSI Common Lisp, it is said that
any two distinct classes created by defclass in CLOS are dis-
joint unless they have a common subclass or one class is a
subclass of the other2. This agreement is supported by the
premise that an object in CLOS is typed to only one class.
However, in the RDF universe, an entity can be typed to
multiple classes. So, the nature of disjointness in CLOS
is not applicable in the RDF universe in theory. However,
SWCLOS implements pseudo multiple-classing machinery,
by using the CLOS class and the multiple-inheritance mech-
anism. Therefore, the algorithm of disjointness for CLOS is
still valid in SWCLOS by virtue of CLOS.

The specifications of ANSI Common Lisp also describe the
compound type specifiers ‘and’, ‘or’, and ‘not’ as follows:

And denotes the set of all objects of the type determined
by the intersection of the typespecs3.

Or denotes the set of all objects of the type determined by
the union of the typespecs. For example, the type list
by definition is the same as (or null cons)4.

2http://www.lispworks.com/documentation/HyperSpec/
Body/04 bb.htm
3http://www.lispworks.com/documentation/HyperSpec/
Body/t and.htm
4http://www.lispworks.com/documentation/HyperSpec/

Table 1: An Example of Ambiguity in CLOS
proc Q1 Q2 Q3 Q4 Q5 Q6
A ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩ ⟨t, t⟩ ⟨f, f⟩ ⟨f, f⟩
B ⟨f, f⟩ ⟨f, t⟩ ⟨f, t⟩ ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩
C ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩ ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩
D ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩ ⟨t, t⟩ ⟨f, t⟩ ⟨f, t⟩

Not denotes the set of all objects that are not of the type
typespec5.

However, it seems that ANSI Common Lisp does not clearly
express the extensional semantics such as shown in Subsec-
tion 2.2. As shown in Table 1, some Common Lisp pro-
cessors return different values for the following very simple
subsumption test. Note that subtypep may return two val-
ues of t and nil. The expression ⟨t, t⟩ in Table 1 means
true, ⟨f, t⟩ or ⟨nil, t⟩ means false, and ⟨f, f⟩ or ⟨nil, nil⟩
means unknown.

(defparameter a (defclass a ()()))

(defparameter b (defclass b ()()))

Query 1: (subtypep ’(and a b) a)

Query 2: (subtypep a ’(and a b))

Query 3: (subtypep ’(or a b) a)

Query 4: (subtypep a ’(or a b))

Query 5: (subtypep ’(not a) a)

Query 6: (subtypep a ’(not a))

The ambiguity also comes from the ANSI specification
that subtypep is permitted to return two values, false and
false, only when at least one argument involves one of these
type specifiers: and, eql, the list form of function, member,
not, or, satisfies, or values. Therefore, the answers listed
above are permissible in ANSI Common Lisp. However, the
correct answer is obvious from the extensional semantics of
‘and’, ‘or’, and ‘not’, as follows.

CEXTI(x ∧ y) ≡ CEXTI(x) ∩ CEXTI(y)

CEXTI(x ∨ y) ≡ CEXTI(x) ∪ CEXTI(y)

CEXTI(x) ≡ CEXTI(cl:standard-objectI)− CEXTI(x)

To disambiguate the semantics and realize a procedu-
ral cl:subtypep algorithm in Common Lisp for compound
types of CLOS classes, ternary truth value logics are re-
quired. In SWCLOS2 (revised version), a truth table shown
in Table 2 is implemented in gx:subtypep. In the table, T
means true (represented by ⟨t, t⟩), F means false (⟨nil, t⟩),
and U means unknown (⟨nil, nil⟩) in RDFS and OWL se-
mantics. Furthremore, to resolve the compound type and
compute the truth value, we adopted rewriting rules for in-
clusiveness of class extensions, as shown in Table 3

3. METAMODELING

3.1 Metamodeling in CLOS
CLOS provides the capability of metamodeling, so a class

can be treated as an instance of metaclasses, such as follows:

Body/t or.htm
5http://www.lispworks.com/documentation/HyperSpec/
Body/t not.htm
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Table 2: Ternary Truth Table
conjunction

T F U Ex.
T T F U T ∧ U → U
F F F F F ∧ U → F
U U F U

disjunction
T F U Ex.

T T T T T ∨ U → T
F T F U F ∨ U → U
U T U U

negation
x T F U Ex.
¬x F T U ¬U → U

Table 3: Rewriting Rules for Inclusiveness

C ⊆ (A ∧B) ⇔ (C ⊆ A) ∧ (C ⊆ A)

C ⊆ (A ∨B) ⇔ (C ⊆ A) ∨ (C ⊆ B)

(A ∧B) ⊆ C ⇔ (A ⊆ C) ∨ (B ⊆ C)

(A ∨B) ⊆ C ⇔ (A ⊆ C) ∧ (B ⊆ C)

(A ∨B) ⊆ (C ∧D) ⇔ (A ⊆ C) ∧ (A ⊆ D) ∧ (B ⊆ C) ∧ (B ⊆ D)

(A ∧B) ⊆ (C ∨D) ⇔ (A ⊆ C) ∨ (A ⊆ D) ∨ (B ⊆ C) ∨ (B ⊆ D)

(A ∧B) ⊆ (C ∧D) ⇔ ((A ⊆ C) ∧ (A ⊆ D)) ∨ ((B ⊆ C) ∧ (B ⊆ D))

(A ∨B) ⊆ (C ∨D) ⇔ ((A ⊆ D) ∨ (A ⊆ D)) ∧ ((B ⊆ C) ∨ (B ⊆ D))

¬A ⊆ ¬B ⇔ B ⊆ A

(defpackage :a

(:export "Dog" "Brian" "Species"))

(defparameter a:Species

(defclass a:Species (cl:standard-class)()

(:metaclass cl:standard-class)))

(defparameter a:Dog

(defclass a:Dog () ()

(:metaclass a:Species)))

(defparameter a:Brian

(make-instance ’a:Dog))

After these expressions in pure CLOS, the following demon-
strates that a:Species is a class of class a:Dog; that is, it is
a metaclass.

(cl:typep a:Brian a:Dog) → t

(cl:typep a:Dog a:Species) → t

We can interpret that these definitions denote the follow-
ing conditions in the notation of Section 2.

a :BrianI ∈ CEXTI(a :DogI)

a :DogI ∈ CEXTI(a :SpeciesI)

In the above CLOS class definitions, the metaclass of
a:Species is designated to cl:standard-class and the direct su-
perclass of a:Species is also designated to cl:standard-class.
Such a condition is described as follows.

a :SpeciesI ∈ CEXTI(cl:standard-classI) ∧
a :SpeciesI ⊑ cl:standard-classI

 
o c1c c2 c3m1 m2 m3k1to superclassto metaclass

Figure 3: Typical Patterns of Metamodeling in
CLOS.

This condition might seem puzzling, but it is the usual way
of defining a metaclass in CLOS. Here, let us call a:Brian
a base object, a:Dog a strict class (not a metaclass), and
a:Species a metaclass (a class of classes). The definitions
of base object, strict class, and metaclass are described as
follows.

baseObject ∈ CEXTI(cl:standard-objectI) ∧
baseObject ̸∈ CCEXTI(cl:standard-classI) ∧

baseObject ̸⊑ cl:standard-classI

strictClass ∈ CEXTI(cl:standard-objectI) ∧
strictClass ∈ CEXTI(cl:standard-classI) ∧

strictClass ̸⊑ cl:standard-classI

metaClass ∈ CEXTI(cl:standard-objectI) ∧
metaClass ∈ CEXTI(cl:standard-classI) ∧

metaClass ⊑ cl:standard-classI

The rationale behind metacircularity of cl:standard-class in
CLOS can be clarified by providing a meta-programming
capability. We can modify the behavior of classes that are
subclasses of cl:standard-object and instances of cl:standard-
class by creating a metaclass as a subclass of cl:standard-
class and redefining the standard methods defined for cl:standard-
class.

Moreover, the metacircularity of cl:standard-class allows
us to build a virtually infinite metamodeling tower.

3.2 Ontological Metamodeling
Whereas there are many ontologies over the WWW, some

of them include direct or indirect self-referential metacircu-
larities, and some of them involve ill-structured metaclasses
from the CLOS perspective. For example, CollectionType
in OpenCyc ontology6 has an indirect membership loop via
VariedOrderCollection. In the SUMO ontology, the strict
class sumo:Meter is simultaneously an indirect subclass and
instance of strict class sumo:PhysicalQuantity. (See Figure
4.) CLOS and SWCLOS cannot treat such ill-structured
metaclass conditions.

Basically, CLOS does not accept any cycle in the class-
subclass relation nor class-instance relation except the metacir-
cularity of cl:standard-class. The well-structured metaclass
hierarchy in the CLOS perspective is depicted as follows.
We call this condition CLOS-clean metamodeling. Figure
3 shows several patterns that are acceptable in metamodel-
ing in the CLOS perspective.

In paticular, the figure reflects that

6http://www.opencyc.org/
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 rdfs:Resource LengthMeasure MeterPhysicalQuantity ConstantQuantityrdfs:Class SystemeInternationalUnitQuantityAbstractEntity UnitOfMeasureto superclassto metaclass remedy
Figure 4: The Remedy for Ill-structured SUMO On-
tology.

1. No class can have any direct and indirect cyclic loop
in subclass relation.

2. No class can have any direct and indirect membership
loop but the direct loop of cl:standard-class (c in Fig-
ure 3).

3. A parallel relation of subclass and membership can
exists anywhere among metaclasses. See, m1 and m2,
and m1 and k1 in Figure 3. Note that the parallel
relation can make a branch of metaclass layer surface
(m1 and k1), but it does not make its own universe,
e.g., m1 and its subclasses belong in the universe of
the superclass.

4. A twisted relation of subclass and membership can ex-
ists anywhere among classes and metaclasses. See, c2

and m2 in Figure 3. The twisted relation makes a sub-
universe in which the top class in the sub-universe sits
as a superclass of every class and every metaclass in
its universe.

Thus, the defect in SUMO ontology with respect to meta-
modeling can be overcome, as shown in Figure 4.

4. REFLECTION IN RDFS AND CLOS
RDFS contains not only a metamodeling mechanism but

also a reflection mechanism like in CLOS languages. In this
section, we discuss reflection in RDFS and CLOS.

Consider the following examples in the SUMO Ontology
with SWCLOS: Meter is a strict class and LengthMeasure is
also a strict class, but SystemeInternationalUnit and UnitOfMea-
sure must be a metaclass with the remedy as described in
the previous subsection.

(defConcept UnitOfMeasure

(rdf:type rdfs:Class)

(rdfs:subClassOf PhysicalQuantity rdfs:Class))

(defConcept SystemeInternationalUnit

(rdf:type rdfs:Class)

(rdfs:subClassOf UnitOfMeasure))

(defConcept Meter

(rdf:type SystemeInternationalUnit)

(rdfs:subClassOf LengthMeasure)))

Here, rdfs:Class occurs twice in UnitOfMeasure definition
form, one is as a type and the other as a superclass of
UnitOfMeasure. The membership loop at cl:standard-class
enables such double roles of metaclasses, i.e., rdfs:Class is
just the same as the cl:standard-class.

Let us discuss metamodeling further. Suppose that we
treat UnitOfMeasure as an individual; for example, imagine
that it has some slot and value as follows.

(setf (slot-value UnitOfMeasure ’p1) Value1)

To do so, slot p1 must be defined at the class of UnitOfMea-
sure. Thus, we define its class as follows.

(defConcept UnitOfMeasureClass

(rdfs:type rdfs:Class)

(rdfs:subClassOf rdfs:Class))

(defProperty p1

(rdfs:domain UnitOfMeasureClass))

(defConcept UnitOfMeasure

(rdf:type UnitOfMeasureClass)

(rdfs:subClassOf PhysicalQuantity rdfs:Class))

In such encoding, UnitOfMeasureClass must be a meta-
metaclass, because UnitOfMeasure is a metaclass. Hence,
for two occurrences of rdfs:Class in the definition of UnitOfMea-
sureClass, one must be a meta-metaclass (on rdfs:subClassOf)
and the other must be a meta-meta-metaclass (on rdfs:type).
This reminds us again of the membership loop in cl:standard-
class. The rdfs:Class inherits the virtue of cl:standard-class.

In short, cl:standard-class plays multiple roles, as a meta-
class, meta-metaclass, meta-meta-metaclass, and so forth.
The membership loop of the cl:standard-class enables mul-
tiple roles. Each of the layers in class modeling, i.e., strict
class layer, metaclass layer, meta-metaclass layer, etc., that
links directly or indirectly to cl:standard-class with the class-
superclass relation. Virtually infinite metaclass layers are
folded into one layer by the membership loop of cl:standard-
class.

Reflection in programming language systems provides the
ability to modify the language’s implementation without
leaving the realm of the language [12]. CLOS is a reflec-
tive OOP language system and such an infinite metamodel
tower is virtually enabled through the membership loop of
cl:standard-class. Thus, if we want to change functions in
CLOS, we can do so by redefining methods in the language
system with the Meta-Object Protocol [4].

RDF and OWL Full languages are also metamodeling
languages. If we wish to use the ontology in practice, we
must understand the reflective structure of rdfs:Class and
owl:Class in our ontology metamodeling. We already demon-
strated metamodeling examples in [7], whereby metamodel-
ing is required to put brand wine IDs in relation to wine
concepts by distinguishing brand wines like Zinfandel and
non-brand wine concepts like California wine; and in another
example, metamodeling is required to realize the OWL-S
ontology in a decision support system for rocket launch op-
erations [10].

5. CONCLUSIONS
In this paper, we explained metacircularity and meta-

modeling in CLOS in terms of denotational semantics ob-
tained from the W3C document of RDF Semantics Recom-
mendation [3]. The membership loop of the cl:standard-
class and the twisted relation between cl:standard-class and
cl:standard-object are similar to those of the rdfs:Class and
rdfs:Resource in the RDF universe. We also gave illustrative
examples of ontological metamodeling with reflection.
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SWCLOS developed on top of CLOS is a language for
ontology description in RDF and OWL, and simultaneously,
it is an Object-Oriented Programming language by virtue
of CLOS. SWCLOS has been successfully utilized in several
projects. Through our experience, we have recognized the
advantages of SWCLOS as an amalgamation of an OOP
language with RDF and OWL logics.

One extensible direction of SWCLOS is software engi-
neering with Semantic Technology. The Software Engineer-
ing Task Force (SETF) of the W3C Semantic Web Best
Practices and Deployment Working Group (SWBPD)7 and
the OMG Ontology Working Group8 are working to inte-
grate object-oriented representation and ontological repre-
sentation. They are exploring Model-Driven Architectures
(MDA) augmented by RDF and OWL. From the viewpoint
of OOP, the method is the key issue for software engineering.
However, the semantics of methods, specifically as related to
RDF and OWL semantics, are still unknown. We intend to
tackle the semantics of methods for objects augmented in
terms of Semantic Technology.
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