MetaModeling in OOP, MOF, RDFS, and OWL

Seiji Koide''? and Hideaki Takeda!

! National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan,
koide@grad.nii.ac.jp, takeda@nii.ac.jp,
WWW home page: http://www.nii.ac.jp/
2 Galaxy Express Corporation, 1-18-16 Hamamatsu-cho, Minato-ku, Tokyo, Japan,
koide@galaxy-express.co. jp,
WWW home page: http://www.galaxy-express.co. jp/

Abstract. Metamodeling is the act of describing the model of a mod-
eling language using another language, namely metamodeling language.
When a language and its meta-language are the same, the language is
called reflective. Reflective modeling languages enable reflective model-
ing or self-descriptive modeling. RDF(S) and OWL are reflective in na-
ture. MOF aims to provide the reflective modeling capability. Therefore,
MOF needs reflective modeling machineries to embody the reflection on
RDF(S) and OWL. We developed a modeling language for RDF(S) and
OWL on top of reflective OOP language, Common Lisp Object System.
In this paper, we devote the discussion to provide deeper insights on
metamodeling and the reflection in RDF(S) and OWL from the view-
point of Object-Oriented metamodeling. We address the OWL-Full con-
nection of the RDF universe and the OWL universe. Finally, we remark
the formalization of ontological metamodeling.

1 Introduction

The metamodeling is a common feature of Object-Oriented Programming (OOP),
Meta Object Facility (MOF), RDF(S), and OWL. There are many discussions
on metamodeling at each of the domains. W3C Software Engineering Task Force
(SETF) envisioned how Semantic Web technologies can be applied in and benefi-
cial to the software engineering.> However, the divergence of discussion does not
converge yet, whereas both Ontology Definition Metamodel (ODM) by OMG and
Ontology Driven Architecture (ODA) by SETF talk a common interdisciplinary
field of the ontology and the software engineering. We have developed a Semantic
Web modeling language called SWCLOS [Koide2006]* on top of Common Lisp
Object System (CLOS). SWCLOS is an amalgam of OOP and OWL/RDF(S).
In this paper, we discuss various issues of metamodeling from our experiences in
the SWCLOS development. We aim to clarify the discussions on metamodeling
in the interdisciplinary field of OOP, MOF, and Semantic Web. At Section 2, we

% http://www.w3.0rg/2001/sw/BestPractices/SE/ODA/
* It is available from http://pegasus.agent.galaxy-express.co.jp/SemanticWeb-swclos-
en.htm

discuss the metamodel layers in ODM and point out that the layers in Model
Driven Architecture (MDA) is different from the ontological metamodel layers
in RDF(S). At Section 3, we discuss the reflection in modeling. At Section 4,
we discuss the integration of the universe of RDF and OWL. At Section 5, we
discuss related works and discussions. Finally, we summarize the discussions and
propose several criteria for metamodeling.

2 Metamodeling

2.1 Metamodeling in MOF and ODM

Metamodeling is the act of describing the model of a modeling language us-
ing another language, namely metamodeling language. MDA® by OMG ad-
dressed metamodeling in UML and proposed four layered metamodel architec-
ture [Mellor2004]. Although MOF itself allows any number of layers in meta-
modeling®, ODM insists on the four layered metamodel architecture as follows.”

— M3 - the MOF

— M2 - a MOF class model, specifying the classes and associations of the system
being modeled, the structure of OWL for example.

— M1 - an instance of an M2 model, describing a particular instance of the
system being modeled, a particular OWL ontology, for example.

— MO - ground individuals. A population of instances of the classes in a paric-
ular OWL ontology, for example.

Java Metadata Interface (JMI) that is a MOF mapping to Java also insists on
the four layered metamodel archtecture as follows.®

— The meta-metamodel (M3) layer defines the metamodel layer, describing
the structure and semantics of the meta-metadata. It is the common “lan-
guage” that describes all other models of information. Typically, the meta-
metamodel is defined by the system that supports the metamodeling envi-
ronment.

— The metamodel layer (also known as the M2 or meta-metadata layer) defines
the model layer, describing the structure and semantics of the metadata. The
metamodel specifies, for example, a database system table that describes
the format of a table definition. A metamodel can also be thought of as
a modeling language for describing different kinds of data. The M2 layer
represents abstractions of software systems modeled using the MOF Model.
Typically, metamodels describe technologies such as relational databases,
vertical domains, etc.

® http://www.omg.org/docs/omg/03-06-01.pdf

® http://www.omg.org/docs/formal /06-01-01.pdf
" http://www.omg.org/docs/ad/05-08-01.pdf

8 http://www.jcp.org/en/jsr/detail?id=40

— The model layer (also known as the M1 or metadata layer) defines the infor-
mation layer, describing the format and semantics of the data. The metadata
specifies, for example, a table definition in a database schema that describes
the format of the MO level instances. A complete database schema combines
many metadata definitions to construct a database model. The M1 layer
represents instances (or realizations) of one or more metamodels.

— The information layer (also known as the MO0 or data layer) refers to actual
instances of information. These are not shown in the figure, but would be
instances of a particular database, application objects, etc.

The ODM Document seems to intend to position RDFS and OWL vocabu-
laries somewhere in the four layers and specified that some of RDFS and OWL
vocabularies are located in M2 and some of them are placed in M1. Eventually
the Document stated that OWL does not make clear distinction between M3,
M2 and M1 objects. However, we argue that the ontological layers that are con-
structed by the membership and subsumption relation of objects do not need to
coincide with the MDA metamodeling layers. The ontological metamodel layers
and the metamodeling language layers are different things. It is important to
understand that the idea of the MDA layered architecture originally does not
express the ontological modeling layers. Rather, MDA layers represent meta-
modeling layers by modeling languages. In fact, the automatic compilation from
Platform Independent Models (PIM) to Platform Specific Models (PSM) is ex-
pected in MDA, in which UML is expected as PIM and the platform means Java
environments, CORBA, .NET, etc.

In consideration of the ontological metamodel layers and the metamodeling
language layers, we may capture two extreme different approaches. One is the
usage of a single modeling language across all ontological layers. The other is
the usage of different modeling languages at different metamodel layers. In the
former approach, the modeling language must embody the semantics of ontolog-
ical models in all ontological layers. In the latter approach, the upper modeling
language should be more universal like MOF and the semantics of the lower mod-
eling languages must satisfy the semantics of ontological models and must be
underpinned by additional axioms or constraints. In this approach, same built-in
vocabularies of RDFS and OWL may appear in M2, M1, and MO.

We developed a modeling language SWCLOS with the former approach [Koide2006].
Hereafter, we focus the discussion of metamodeling on the former approach.

2.2 Metamodeling in RDF(S) and OWL

Figure 1 shows all RDFS vocabularies and the hierarchical structure. In the fig-
ure, rdfs:Class and rdfs:Datatype are metaclasses, namely a class of other classes.
Properties such as rdfs:seeAlso and rdfs:member are instances of rdf:Property
and rdfinil is an instance of rdf:List. Thus, we capture RDFS vocabularies as
three metamodel layers, i.e., metaclass layer, class layer, and instance layer. Note
that this ontological metamodel structure is ascribed to the membership and the
subsumption by rdf:type and rdfs:subClassOf.

N «—— rdfssubClassOf C D das

«— — — rdfsisubPropertyOf

<--=-= rdf:itype © instance

=

rdissubClassOf > < rdissubProperty0r > - w %

Fig. 1. Layered Hierarchy of RDFS

Since OWL is an extension of RDF(S), OWL vocabularies inherit RDFS
characteristics and the metamodeling of RDF(S) is involved in OWL. OWL-Full
provides the capability to capture a class as individual. Therefore, the exect ex-
tension of RDF(S) metamodeling is realized in OWL-Full precisely. However, it
does not mean no rules or no principles allow to deal with classes as individual in
OWL-Full. Distinguishing objects between instances, classes, and metaclasses is
crucial to metamodeling. In SUMO ontology?, sumo:Meter, which is an instance
of sumo:SystemeInternationalUnit,is a subclass of sumo:PhysicalQuantity.
However, sumo:SystemeInternationalUnit is also a subclass of sumo:PhysicalQuantity.
Namely, sumo:PhysicalQuantity is simultaneously both a metaclass and super-
class of sumo :Meter. The sumo:PhysicalQuantity is not categorized onto either
the metaclass layer or the class layer in ontology. We argue that we need more
precise formalization on metamodeling in RDF(S) and OWL-Full, whereas such
ad hoc classification of sumo:PhysicalQuantity originated from the EngMath
Ontology [Gruber1994] by KIF. The problem of the formalization of metamod-
eling is challenging and almost not tackled yet in Semantic Web.

2.3 Metamodeling from Object-Oriented Perspective

The semantics in Object-Oriented models is underpinned by the behavior of
objects. So, we discuss the semantics of OOP through the method definition
and invocation mechanism. A class in OOP is a computational notion that rules
a set of objects and controls the behavior of them. The methods defined at
a class establish the behavior of instances of the class. Note that methods at
superclasses are inherited by the subclasses. This semantics of class-instance
and inheritance in OOP is consistent with the semantics of the membership and
the subsumption in RDF(S) and OWL. W3C Software Engineering Task Force

? http://www.ontologyportal.org/

(SETF) compared OWL features to OOP language features and pointed out
several serious discrepancies between OOP semantics and OWL semantics. We
solved the discrepancies in the development of SWCLOS [Ko0ide2006] using Meta-
Object Protocol (MOP) [Kiczales1992]. RDFS and OWL vocabularies are CLOS
objects in SWCLOS. Note that a class in CLOS is an object called metaobject.
In this subsection, we discuss the metamodeling in RDF(S) from the viewpoint
of OOP method definition and invocation.

The metamodeling is a basic framework of dynamic OOP languages such
as CLOS. In order to capture an object as instance, a class of an object must
be established in OOP. This principle is extended to classes and metaclasses
in OOP metamodeling. Namely, in order to capture a class as individual, we
must establish a class of the class (metaclass). For instance, in order to capture
sumo:PhysicalQuantity as individual, the class of sumo:PhysicalQuantity
must be established as metaclass. So far, no difficulty exists. rdfs:Class is a
metaclass in RDFS vocabularies.

Then, let us suppose we define the concept of old Japanese length measure
unit Shaku as follows.

<rdfs:Class rdf:ID= "Shaku">
<rdfs:subClass0f rdf:resource ="#LengthMeasure"/>
<rdf:type rdf:resource = "#0ldJapaneseUnitClass"/>
<rdfs:comment>This example is for the demonstration of meta-metaclasses.
Shaku is an old Japanese length measure unit.
</rdfs:comment>
</rdfs:Class>

Here, Shaku is a user-defined class. In non-metamodeling language like Java
or C#, the language system interprets and compiles class definitions. In meta-
modeling language like MDA, the machinery in the metaclass layer (M2) pro-
cesses such class definitions and a user-defined class populates a class layer (M1).
In CLOS, a class is a kind of object in CLOS system and a user-defined class
also populates the computational environment in runtime.

The above definition of Shaku seems to be unconcerned about the lifecycle of
objects. However, lifecycle functions such as CREATE and DELETE are requisite in
actual modeling languages, and it is inevitable for the single modeling language
approach. Even an abstract modeling language MOF is equipped with CREATE
and DELETE functions. In the rest of this section, we explain the semantics of
RDF(S) with the object creation method and method invocation mechanism.
However, the objective of discussion is not on the OOP, rather on the clarity of
RDF(S) semantic model.

From the dynamic OO perspective, so-called CREATE method is applied to
rdfs:Class in order to make a Shaku object as an instance of rdfs:Class. Then,
in case of a full-bodied dynamic OO language in which all procedures including
CREATE are implemented as method, the method of creating a new object must
be defined at a class of the receiver of CREATE message. Namely, the CREATE
method for Shaku must be defined at a class of rdfs:Class in this case, that
is, a class of metaclass or a meta-metaclass. Note that the class of rdfs:Class

is rdfs:Class itself in RDFS. Figure 2 illustrates such message passing and the
method definition and invocation mechanism.

Send CREATE message for Shaku

)
<4— rdfs:subClassOf
meta-metaclass @ <«
CREATE definition ~ rdftype
~ /
metaclass OldJapaneseUnitClas
-~ A
<
class LengthMeasure { shaku >

base

Fig. 2. CREATE method definition and invocation for a new class creation

3 Reflection in RDF(S) and OOP

3.1 Self-referencing Meta-circularity

RDF(S) embraces not only the metamodeling mechanism but also the reflection
in metamodeling. We discuss the reflection in RDF(S) from the perspective of
dynamic OOP languages.

In order to complete the Shaku definition, we must define 01dJapaneseUnitClass,
supposing that LengthMeasure is already defined beforehand in the same way
as sumo:LengthMeasure in SUMO ontology.

The following is an example of the definition.

<rdfs:Class rdf:ID= "OldJapaneseUnitClass">
<rdfs:comment>0ldJapaneseUnitClass is a metaclass for old Japanese
mesurement unit classes.
</rdfs:comment>

</rdfs:Class>

A grance at this definition gives the same impression as the definition of
Shaku. However, both are different from the viewpoint of metamodeling. The
0ldJapaneseUnitClass in the Shaku definition should be a metaclass, because
it is a class of Shaku through rdf:type. If so, what is the rdfs:Class in the
01dJapaneseUnitClass definition? Is it a metaclass or meta-metaclass?

In order to create 01dJapaneseUnitClass (metaclass) or to apply a CRE-
ATE method to the class of 01dJapaneseUnitClass, that is rdfs:Class (meta-
metaclass) in this case, we must define the CREATE method at a class of the

Send CREATE message for OldJapaneseUnitClass

meta-meta-metaclass
CREATE deflnmo

4— rdfs:subClassOf
meta-metaclass
«_ rdf:type
metaclass ¢ (:O:Ig.]apaneseUnnCI_a_sé:
class LengthMeasure ’: Shaku >

base

Fig. 3. Ontological metamodel tower concerning CREATE method definition and invo-
cation

rdfs:Class (meta-metaclass), namely we need a meta-meta-metaclass in meta-
class creation. Figure 3 shows such mechanism of metamodeling and the onto-
logical metamodel tower.

Such a metamodel tower from base-level to class-level, metaclass-level, meta-
metaclass level, meta-meta-metaclass level will be infinite in principle, if we
desire to mandate the perfect freedom to the language system. Therefore, peo-
ple usually abandon the perfection and accept the limited flexibility of system.
However, the reflection in programming language systems provides the ability
to modify the language’s implementation without leaving the realm of the lan-
guage [Paepckel993]. Historically reflective Knowledge Representation and re-
flective programming has been researched and developed over two decades. Ac-
cording to reflection principle [Feferman1962], Weyhrauch presented the reflec-
tion mechanism in the first-order logic system FOL [Weyhrauch1980]. Bowen [Bowen1986]
invented demo predicate in Prolog, which simulates the behavior of Prolog sys-
tem.

From the viewpoint of Knowledge Representation, self-reference was the key
issue required for conducting meta-theory and coping with cognitive overflow.
From the viewpoint of programming, meta-circularity was a key technology to en-
able reflection. 3-Lisp [Smith1984] was the first reflective programming language
in Lisp, extending basic lisp machinery eval and apply to reflective computing.
According to the idea of reflection, CLOS was designed to specify a model for
the language implementation and to standardize it in OO metamodeling and
reflective computing [Kiczales1992]. A programmer can manipulate the internal
working mechanism in language systems by using CLOS Meta-Object Protocol
(MOP). In CLOS, standard-classis the class of all other classes including both
standard-class itself and standard-object, and standard-object is the top
class of all other classes including standard-class. This morphology is the same
graph-structure as rdfs:Class and rdfs:Resource in RDFS vocabularies.

The class of rdfs:Class is rdfs:Class itself in RDFS. The infinite metamodeling
is terminated with the self-referencing meta-circularity. Note that rdfs:Class
plays multiple roles as metaclass, meta-metaclass, meta-meta-metaclass, and so
on. Thus, the infinite metaclass layers are folded into one layer by the meta-
circularity of rdfs:Class. Therefore, in order to make the metaclass 01dJapaneseUnitClass
as an instance of meta-metaclass rdfs:Class, a user applies a CREATE method
that is defined at rdfs:Class as meta-meta-metaclass to rdfs:Class as meta-
metaclass, whereas the CREATE method shall be same to the definition at rdfs:Class
as metaclass at first.

3.2 Undecidability in Metaclass Layers

Objects can be discriminated between instances, classes, and metaclasses. How-
ever, we cannot distinguish metaclass objects between internal metaclass layers.
Suppose the CREATE method is intrinsically defined at rdfs:Class, the method is
applicable in creating objects at base level, class level, metaclass level, meta-
metaclass level, and meta-meta-metaclasse level because of rdfs:Class meta-
circularity. Then, how we expand or customize the CREATE method for 01dJapaneseUnitClass
in order to attach specialties to Shaku? For example, the CREATE method might
signal an alarm or make some special structure dedicated to Shaku. To do so, we
let 01dJapaneseUnitClass be a subclass of meta-metaclass rdfs:Class rather
than metaclass rdfs:Class. As 0ldJapaneseUnitClass inherits the CREATE
method at rdfs:Class, we can modify the inherited method and encode a
special CREATE method that is dedicated to create an instance of instances
of 01dJapaneseUnitClass at the meta-metaclass layer. Figure 4 illustrates the
mechanism of the special CREATE method to create Shaku. The followings de-
scribe the definition of 0ldJapaneseUnitClass and an instance of Shaku in
RDF(S).

<rdfs:Class rdf:ID= "0OldJapaneseUnitClass">
<rdfs:subClass0f rdf:resource = "&rdfs;Class">
<rdfs:comment>0ldJapaneseUnitClass is a metaclass for
old Japanese mesurement unit classes.
</rdfs:comment>

</rdfs:Class>

<Shaku rdf:ID= "10_shaku'">
<rdfs:comment>ten times of one unit of shaku</rdfs:comment>
</rdfs:Class>

Note that 0ldJapaneseUnitClass in the metaclass layer and the meta-
metaclass layer is identical as well as rdfs:Class is identical in the two layers.
Therefore, we cannot distinguish between the metaclass 01dJapaneseUnitClass
and the meta-metaclass one as is. Then, we need to distinguish the case of in-
stance creation and class creation in CREATE method. Similarly, we need to dis-
tinguish property value setting in the case of a property to classes (the method
should be defined at a metaclass) and a property to metaclasses (the method

<«4— rdfs:subClassOf

meta-*metaclass
meta-metaclass

class

base

Fig. 4. Unfolded RDF graph structure in CREATE invocation for class creation

should be defined at a meta-metaclass) in SET method, which is identical between
a metaclass and a meta-metaclass.
Figure 5 shows the final RDF graph around 0ldJapaneseUnitClass.

<4— rdfs:subClassOf
<“

- rdfitype

/"-h‘\\ ,”‘--~\\\
meta—*metacbéss ’ -
meta-metaclass @ ? QOldJapaneseUnitClass
metaclass '\ ’

S - it NI~<¢ ’

-~-) SSIsdaao -
0 o7

class LengthMeasure @

base

Fig. 5. An example of folded RDF graph structure of a metaclass

4 Connection of RDF Universe and OWL Universe

The document on OWL semantics [OWLRDFS] states that there are two differ-
ent styles on the connection between the RDF universe and the OWL universe.
In OWL-Full style, elements of the OWL universe are identified to the elements
in RDF universe. In OWL-DL style, elements of the OWL universe are different
from their RDF counterparts. In this section, we discuss the OWL-Full style
connection according to OO modeling principle.

10

All things in the RDF universe are instances of rdfs:Resource [RDFS]. The
reason is described in the following list from OO perspective. the subsumption
and transitivity rules in RDF(S) are shown at Table 1 [RDFMT)].

Table 1. Subsumption and Trasitivity Rules

Rule If Contains Then Add
Subsumption | uuu rdfs:subClassOf xxx .
vvv rdf:type uuu . vvv rdf:type xxx .

Transitivity | uuu rdfs:subClassOf vvv .
vvv rdfs:subClassOf xxx . | uuu rdfs:subClassOf xxx .

— All metaclasses, which are instances of rdfs:Class, are instances of rdfs:Resource,
because rdfs:Class is a subclass of rdfs:Resource.

— rdfs:Class is also an instance of rdfs:Resource, because rdfs:Class (metaclass)
is an instance of rdfs:Class (meta-metaclass) and rdfs:Class (meta-metaclass)
is a subclass of rdfs:Resource.

— All classes, which are instances of metaclasses, are instances of rdfs:Resource,
because all metaclasses are subclasses of rdfs:Resource with the premising
condition that all metaclasses hold rdfs:Class as superclass. Thus, the premis-
ing condition is required for metaclasses in the RDF universe.

— All instances, which are instances of classes, are instances of rdfs:Resource,
because all classes are subclasses of rdfs:Resource in the RDF universe.

In other words, the condition that all metaclasses must hold rdfs:Class as
superclass, yields the metaclass layer. The aggregation of all classes, which are
instances of rdfs:Class but do not hold rdfs:Class as superclass makes the class
layer.

At first in the OWL universe discussion, all things in the OWL universe
should be instances of owl:Thing as well as all things in the RDF universe are
instances of rdfs:Resource. Namely, the following conditions are requried.

— All metaclasses in the OWL universe, which are instances of owl:Class,
should be instances of owl:Thing. It implies that owl:Class should be a sub-
class of owl:Thing.

— To let owl:Class be in the OWL universe, owl:Class should be an instance of
owl:Class itself, supposing owl:Class is a subclass of owl:Thing.

— All classes in the OWL universe, which are instances of OWL metaclasses,
should be instances of owl:Thing, It implies that all metaclasses should hold
owl:Class as superclass, supposing owl:Class is a subclass of owl:Thing.

— All instances in the OWL universe, which are instances of classes, should
be instances of owl:Thing. It implies that all classes should be subclasses of
owl:Thing.

However, those conditions are not satisfied in the OWL schema definition, in
which owl:Class and owl:Thing is defined as follows.'°

19 http:/ /www.w3.0rg/2002/07 /owl.rdf

11

<rdfs:Class rdf:ID="Class">
<rdfs:label>Class</rdfs:label>
<rdfs:subClass0f rdf:resource="&rdfs;Class"/>
</rdfs:Class>

<Class rdf:ID="Thing">
<rdfs:label>Thing</rdfs:label>
<union0f rdf:parseType="Collection">
<Class rdf:about="#Nothing"/>
<Class>
<complementOf rdf:resource="#Nothing"/>
</Class>
</union0f>
</Class>

In this definition, an instance of owl:Thing belongs to the OWL universe but
an instance of owl:Class (class and metaclass except owl:Class itself) does not
belong to the OWL universe. owl:Class should be a subclass of owl:Thing as well
as rdfs:Class is a subclass of rdfs:Resource, in order that an instance of owl:Class
is also an instance of owl:Thing.

In addition, in order to let owl:Class be an instance of owl:Thing, owl:Class
must be an instance of itself, while the meta-circularity of owl:Class is not im-
plemented in SWCLOS yet. We axiomatized the following in SWCLOS.

<rdfs:Class rdf:ID="Class">
<rdf:type rdf:resource="#Class"> <!-- This line is not implemented. -->
<rdfs:subClass0f rdf:resource="#Thing"/>

</rdfs:Class>

Second, the above conditions for establishing the OWL universe do not pro-
duce any contradiction in the connection of the OWL universe and the RDF
universe in the sense of Object-Oriented modeling.

owl:Thing should be a subclass of rdfs:Resource. Otherwise, every instance
of owl:Thing shall not be an instance of rdfs:Resource. Then, we axiomatized
owl:Thing as follows in SWCLOS, although such an axiom is implemented in
CLOS language level and invisible in RDF expression. Figure 6 illustrates the
connection of RDF universe and OWL universe in the OWL-Full style.

<Class rdf:ID="Thing">
<rdfs:subClass0f rdf:resource="&rdfs;Resource"/>
</Class>

All of the OWL vocabularies should be a division of three parts of the
RDF universe, namely individuals, classes, and properties [OWLRDFS]. Note
that this statement is satisfied because owl:Thing is a subclass of rdfs:Resource
as discussed here, in addition that owl:Class is a subclass of rdfs:Class and
owl:ObjectProperty /owl:DatatypeProperty is a subclass of rdf:Property in the
definition of the OWL schema file.

12

<= Additional subClassOf

<«4— rdfs:subClassOf
<«_ rdf:type

meta-*metaclass
meta-metaclass
metaclass

class rdfs:Resource m {__ aclass >

base

Fig. 6. The Connection of RDF Universe and OWL Universe

In practice, SWCLOS that embodies RDF(S) semantics read the OWL def-
inition file and creates elements of OWL vocabularies as RDF elements, then
additional axioms and functions for OWL are installed so that the OWL seman-
tics is established in the SWCLOS booting process.

5 Discussion and Related Works

Harmelen, et al. [Harmelen1992] addressed a comprehensive discussion on the re-
flection. They emphasized the separated layered architecture in reflective knowl-
edge systems in order to circumvent the self-referentiality for the purpose of the
conceptual clarity and modularity. Pan and Horrocks have proposed the fixed
layered metamodeling architecture for RDF [Pan2003] and OWL [Pan2005]. The
motivation comes from DL-based implementation.

We argue that SWCLOS is a modeling language system that is not separated
into metamodel layers, as it is implemented on top of CLOS, a reflective OO sys-
tem, and the RDF(S) and OWL metamodeling structure is straight-forwardly
mapped onto the CLOS structure of metaclasses, classes, and instances. Ontolo-
gies are separated into the base layer, class layer, and metaclass layer in the
single object system. The rationale of the layered architecture is conveyed from
the RDF(S) layered architecture. RDF(S) and OWL semantics are embodied by
the built-in model of RDF(S) and OWL in SWCLOS. Ontologies modeled in
RDF(S) and OWL by users also exist in SWCLOS. If we define an element of
RDF universe using rdfs:Class and rdfs:Resource in SWCLOS, the defined
element exists in the same universe of rdfs:Class and rdfs:Resource in the
SWCLOS computational environment. There are no differences between user-
defined elements and built-in elements such as rdfs:Resource in their software
implementation. Every element in RDF(S) and OWL universe is an object in

13

CLOS. The causal connection'![Maes1987] in reflection is involved in SWCLOS.
If we change an object in RDF(S) and OWL universe, the change is identical
in the base level, class level, and metaclass level. This language embodiment is
different from modeling languages like ODM or DL-based languages.

The semantics of models that are represented by separated ontological model-
ing languages must be underpinned by another way, e.g., using OCL'2, SCL'3, or
some modeling language outside that is attached or embedded to modeling sys-
tems. Widhalm and Mueck [Widhalm2003] used OCL in order to keep semantic
constraints for merging Topics in Topic Map. Kaneiwa and Satoh [Kaneiwa2005]
utilized First Order Logic and Counting Quantifieres in order to validate mod-
els represented by UML. The coverage of semantics and modeling capability
of modeling languages is different each other. Therefore, interesting question
is how ODM supports individual modeling language semantics in the common
framework.

6 Concluding Remarks

In this paper, we discussed the metamodeling mechanism in OOP, MOF, RDF(S)
and OWL, and the reflection of RDF(S) from the perspective of OOP. We ad-
dressed the clear image of the OWL-Full style connection between the RDF
universe and the OWL universe from OO perspective.

We formalize the metamodeling in RDF(S) and OWL-Full as follows from
the discussion in this paper.

— RDF(S) and OWL-Full ontology should be separated into three layers, i.e.,
base layer, class layer, and metaclass layer.

— An object that is an instance and a subclass of rdfs:Class belongs to the

metaclass layer.

An object that is an instance but not a subclass of rdfs:Class belongs to the

class layer.

An object that is not an instance of rdfs:Class belongs to the base layer.

— An object in the class layer must not be a subclass of rdfs:Class, and is
distinguished from objects in the metaclass layer.

— An object in the metaclass layer can be a metaclass, meta-metaclass, meta-
meta-metaclass, and so on, but cannot be recognized which metaclass layer
it is in. The role must be interpreted in the context.

We expect that the above formalization on metamodeling increases the de-
cidability on RDF(S) and OWL-Full computation, although we cannot decide
which internal metaclass layer an object in the metaclass layer belongs to.

1 The object level condition must reflect the metalevel condition, and vice vase. In
separated modeling languages, the change in one layer must flow up or down to
another layer in runtime. In single modeling language that shares the computational
environment, variables and objects are shared among separated ontological layers.

2 http://www.omg.org/docs/ptc/03-10-14.pdf

13 http://cl.tamu.edu/

14

References

[Bowen1986] Bowen, K.: Meta-level Techniques in Logic Programming. Int. Conf. Al
and its Applications, Singapore (1986)

[Feferman1962] Feferman, S.: Transfinite Recursive Progressions of Axiomatic Theo-
ries. J. Symbolic Logic, 27-3 (1962) 259-316

[Gruber1994] Gruber, T. R., Olsen, G. R.: An Ontology for Engineering Mathematics.
4th Int. Conf. Principles of Knowledge Representation and Reasoning, Bonn, Morgan
Kaufmann (1994)

[Harmelen1992] Harmelen, F. van, et al.: Knowledge-level Reflection. Pate and Steels
(eds.), Enhancing the Knowledge Engineering Process — Contributions from ES-
PRIT, Elsevier (1992) 175-204

[Kaneiwa2005] Kaneia, Satoh: Consistency Checking Algorithms for Restricted UML
Class Diagrams. NII Technical Report, NII-2005-013E, National Institute of Infor-
matics (2005)

[Kiczales1992] Kiczales, G., des Riviéres, J., Bobrow, D.G.: The Art of the Metaobject
Protocol, MIT Press, (1992)

[Koide2006] Koide S., Takeda H.: OWL-Full Reasoning from an Object Oriented Per-
spective. Asian Semantic Web Conf. ASWC2006, Springer (2006) 263-277

[Maes1987] Maes, P.: Computational Reflection. Technical Report 87-2, Free univer-
sity of Brussels (1987)

[Mellor2004] Mellor, S. J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of
Model-Driven Architecture. Addison-Wesley Professional (2004)

[OWLRDFS] Patel-Schneider, P. F., Hayes, P., Horrocks, I.. OWL Web Ontology
Language Semantics and Abstract Syntax Section 5. RDF-Compatible Model-
Theoretic Semantics. W3C Recommendation (2004-2). http://www.w3.org/TR /owl-
semantics/rdfs.html

[Paepcke1993] Paepcke, A.: User-Level Language Crafting Introducing the CLOS
Metaobject Protocol. Paepcke (ed.) Object-Oriented Programming — The CLOS
Perspective, MIT Press, (1993) 65-99

[Pan2003] Pan, J. Z., Horrocks, I.: RDFS(FA) and RDF MT: Two Semantics for RDF'S.
Proc. 2nd Int. Semantic Web Conf. (ISWC2003), Sanibel Island (2003) 30-46

[Pan2005] Pan, J. Z., Horrocks, I., Schreiber, G.: OWL FA: A Metamodeling Extension
of OWL DL. Workshop OWL: Experiences and Directions, Galway (2005)

[RDFMT] Hayes, P., McBride, B.: RDF Semantics. W3C Recommendation (2004-2).
http://www.w3.org/ TR /rdf-mt/

[RDFS] Brickley, D., Guha, R. V.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation (2004-2). http://www.w3.org/ TR /rdf-schema/

[Smith1984] Smith, B.: Reflection and Semantics in Lisp. POPL ’84: 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (1984)
23-35

[Weyhrauch1980] Weyhrauch, R. W.: Prolegomena to a Theory of Mechanized Formal
Reasoning. Artificial Intelligence, 13 (1980) 133-170

[Widhalm2003] Widhalm, R., Mueck, T. A.: Merging Topics in Well-Formed XML
Topic Maps. Int. Semantic Web Conf., Sanibel Island (2003) 64-79

