
OWL-Full Reasoning from an Object Oriented
Perspective

Seiji Koide1,2 and Hideaki Takeda1

1 National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430
koide@grad.nii.ac.jp, takeda@nii.ac.jp,
WWW home page: http://www.nii.ac.jp/

2 Galaxy Express Corporation, 1-18-16, Hamamatsu-cho, Minato-ku, Tokyo 105-0013
koide@galaxy-express.co.jp,

WWW home page: http://www.galaxy-express.co.jp/

Abstract. Bridging the gap between OWL and Object-Oriented Pro-
gramming (OOP) languages is an indispensable condition to enable the
Object-Oriented Modeling in Software Engineering by OWL. However
it is very difficult in case of static OOP languages like Java and C#.
We have developed SWCLOS, which is an OWL processor seamlessly
built on top of Common Lisp Object System (CLOS), a dynamic OOP
language. SWCLOS allows programmers to develop application domain
models by OWL and enables OOP upon the models. In this paper, we
explain the semantic gap between OWL and OOP languages, introduce
the RDFS and OWL realization at SWCLOS, and discuss the OWL
features from OOP perspectives. Finally we demonstrate the OWL-Full
level performance in SWCLOS.

1 Introduction

It is natural to combine the domain modeling in Object-Oriented Programming
(OOP) with the idea of object-centered modeling in ontology development. Re-
cently, the Software Engineering Task Force (SETF) in W3C Semantic Web Best
Practices and Deployment Working Group has started to promote synergies be-
tween the Semantic Web and the domains associated with Software Engineering3.
One of the objectives is the Ontology Driven Software Engineering, in which ones
expect benefits of unambiguous domain models, consistency checking facilities,
validated model sharing, and semi-automatic code generation in software devel-
opment. The realization of the Ontology Driven Architecture (ODA) by SETF
requires to reorganize the object-oriented modeling for Software Engineering on
the framework of Semantic Web, in particular, OWL. In order to enable the
OOP upon OWL, we should bridge the semantic gap between OOP languages
and OWL. However it is difficult in case of static OOP languages like Java and
C#. Rather we need dynamic OOP languages.

The problem of OWL-DL is the separation between the class and the individ-
ual from the viewpoint of Software Engineering. In reality, the decision whether
3 http://www.w3.org/2001/sw/BestPractices/SE/
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we capture an entity in a model as class or individual depends upon the char-
acteristics of the application domain and the attitudes of human modelers. For
example, a wine product such as ElyseZinfandel should be an individual for wine
expert systems, but should be a class in logistics for wine wholesalers. Borgida,
et al. [Borgida2003] pointed out that one must create a “meta-individual” in
order to work around such problems in Description Logic. Still, there are no
dominant ideas to compute OWL-Full by means of Description Logics such as
Tableau Algorithms.

We developed an OWL processor called SWCLOS4 [Koide2004,Koide2005]
that is built on top of Common Lisp Object System (CLOS), a dynamic OOP
language of Lisp. In CLOS, the class is not only an object schema to define
instances but also an object per se called metaobject. CLOS programmers can
encode meta-modeling using the CLOS reflective programming facilities and
the Meta-Object Protocol [Kiczales1991]. Therefore, the OWL-Full performance
can be obtained by CLOS meta-programming facilities using SWCLOS. In fact,
the property owl:sameAs, of which domain is owl:Thing, can be attached to
OWL classes in SWCLOS, because OWL classes are individuals of owl:Thing in
SWCLOS. Thus, the lisp predicate owl-same-p is applicable to not only OWL
individuals but also OWL classes.

On the contrary, the loss of Tableau Algorithms from Description Logic infer-
ence brings the incompleteness to the subsumption calculation [Nardi2003]. We
carefully implemented the extended structural subsumption algorithm in SWC-
LOS. However, the completeness is not obtained yet.

In this paper, at Section 2 we explain the problem of OOP languages with
the comparison to OWL/RDF, and the dynamic features of CLOS language that
enable RDFS/RDF semantics. At Section 3, we introduce OWL specific features
in SWCLOS and the extended structural subsumption algorithm. At Section 4,
we demonstrate OWL-Full meta-modeling in SWCLOS, then we conclude at
Section 5.

2 A Comparison of OWL/RDF and Object-Oriented
Programming Languages

The Software Engineering Task Force compared OWL/RDF features to or-
dinary Object-Oriented Programming Languages (OOPLs) such as Java and
C# [SETF2006]. They pointed out serious discrepancies between OOPLs and
OWL/RDF as follows. Note that the class in OOPLs is compared to the OWL
class, and the instance is compared to the OWL individual. The property and
value pair (or role and filler pair) in OWL/RDF is compared with the slot or
the member variable of OOPLs.

– Classes in OOPLs are regarded not as sets to which instances belong but as
types for instances.

– Each instance in OOPLs belongs one class as its type’s instance.
4 It is available from http://pegasus.agent.galaxy-express.co.jp/galexinfo/indexe.htm
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– Instances in OOPLs cannot change their type at runtime.
– The list of classes in OOPLs must be fully known at compile-time and cannot

change after that.
– There is no reasoner in OOPLs that can be used for classification and con-

sistency checking at runtime or build-time.
– Properties in OOPLs are defined locally to a class and not stand-alone enti-

ties.
– Instances in OOPLs cannot have arbitrary values for any property without

the definition in its class, and no domain constraint.

However, some of these items are not properly applied to CLOS. We summa-
rized the dynamic features of CLOS in Object-Oriented Programming as follows.

– Multiple Class Inheritance: Methods and slots are inherited from multiple
classes.

– Dynamic Programming: CLOS provides the means to redefine class defini-
tions in program runtime.

– Meta-Object: A class is the first-class entity as object in CLOS, so a class
in CLOS is called metaobject.

– Meta-Class: A meta-class or a class of classes allows ones to modify meth-
ods for classes including system intrinsic methods using the Meta-Object
Protocol [Kiczales1991].

– Reflective Programming: The behavior of meta-classes including system meth-
ods is alterable using the Meta-Object Protocol. A programmer can modify
behaviors of lisp systems. For example, so-called new method can be cus-
tomized adapting for the features of applications by programmers.

We have implemented OWL/RDF semantics with CLOS by leveraging such
dynamic and reflective language features. In the rest of this section, we explain
the implementation of basic OWL/RDF semantics and RDFS/RDF axioms and
entailments in SWCLOS through CLOS features. OWL specific semantics and
the implementation are explained in the next section.

2.1 The Type in CLOS and the Membership in RDF

A class in OWL/RDF is a set of some individuals (called an extension), and the
class-subclass relation in OWL is the inclusiveness of the extensions. Namely, the
statement that a class C2 includes a class C1 (C1 v C2) means that all individuals
of class C1 are concurrently individuals of class C2. On the other hand, the
semantics of class-instance in CLOS is different from OWL/RDF. A class in
CLOS is a thing of which instances share methods and slot structure definitions.
The semantics of CLOS class is built on the frame of slot structures and methods.
However, the class-subclass relation and class-instance relation in CLOS work
upon the transitivity and subsumption just same as RDFS. In practice, the
RDF entailment rule rdfs95 (subsumption rule) and rdfs116 (transitivity rule
5 http://www.w3.org/TR/rdf-mt/#rulerdfs9
6 http://www.w3.org/TR/rdf-mt/#rulerdfs11
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on rdfs:subClassOf) are natively realized in the CLOS class-subclass relation.
Therefore, OWL individuals are straightforwardly mapped to CLOS instances
and OWL classes are mapped to CLOS classes. Thus, rdfs:subClassOf is replaced
with class-subclass relation in CLOS and rdf:type is replaced with class-instance
relation.

2.2 Multiple Types by Invisible Classes

In the semantics of OWL/RDF, an instance can belong to multiple classes. For
example, a vintage wine vin:SaucelitoCanyonZinfandel1998 in Wine Ontology7

is an instance of both vin:Vintage and vin:Zinfandel. However, a CLOS class is a
prototype to create its instances, then instances must inevitably belong to a sin-
gle class. To solve this problem, we have introduced the invisible class that may
be a subclass of visible multiple classes. For example, vin:SaucelitoCanyonZinfandel1998
is an instance of vin:Zinfandel.15 that is invisible in OWL and a subclass of
vin:Vintage and vin:Zinfandel in CLOS.

2.3 Forward Reference by Proactive Entailments

In order to enable forward-referencing, CLOS automatically creates an unde-
fined but referred class as a class under forward-referenced-class. However,
an attempt to make an instance of a forward referenced class causes an alarm in
CLOS. The forward referenced class must be defined by the time of its instance
creation. This function is insufficient for RDF forward reference. Fortunately,
there are explicitly a number of RDF and RDFS entailment rules, in addition
to the monotonicity principle in Semantic Web. Therefore, if we encounter an
undefined class reference in reading an OWL file, we can create it as the most
abstract concept in the context by applying various RDF and RDFS entailment
rules for the context without the contradiction in definitions that will appear
later on. For instance, rdf18 can be utilized for an undefined predicate to be
created as an instance of rdf:Property, and rdfs49 assures for a subject and an
object in triple to be defined as a resource object. The definition afterwards may
be used to refine forward-referencing definitions precisely. The dynamic OOP
features of CLOS such as class-change and reinitialization in runtime enable the
implementation upon the forward reference by means of such proactive entail-
ments.

2.4 The Realization of RDFS/RDF Axioms and Entailments

We implemented all RDFS/RDF axioms and entailment rules10 in SWCLOS by
exploiting the CLOS potential with Meta-Object Protocol. Most of entailments
7 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf
8 http://www.w3.org/TR/rdf-mt/#rulerdf1
9 http://www.w3.org/TR/rdf-mt/#rulerdfs4

10 http://www.w3.org/TR/rdf-mt/
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are realized only by mapping RDFS classes to CLOS classes and RDFS meta-
classes (rdfs:Class and rdfs:Datatype) to CLOS metaclasses. In RDFS, rdfs:Class
is an instance of itself. Such membership loop is the source of reflective systems
and cl:standard-class in CLOS is also an instance of itself. However, CLOS
does not allow to include other membership loops except cl:standard-class,
so we worked around this problem by setting another class of rdfs:Class and
making customized typep that pretends the membership loop upon rdfs:Class.

(cl:typep rdfs:Class rdfs:Class) -> common-lisp:nil

(cl:subtypep (class-of rdfs:Class) rdfs:Resource) -> t

(typep rdfs:Class rdfs:Class) -> t

Where t means boolean true in Lisp, and typep is a type testing func-
tion that is almost same as Common Lisp native predicate cl:typep except on
rdfs:Class.

3 OWL Reasoning in SWCLOS

3.1 OWL Axioms over RDFS Axioms

In theory, OWL is an extension of RDFS/RDF. Therefore, SWCLOS syntac-
tically and semantically reads the OWL definition file11 as RDFS/RDF, and
keeps RDFS/RDF semantics among OWL vocabularies in RDFS vocabularies.
The followings demonstrate the relation that is defined in the OWL definition
between rdfs:Class and owl:Class.

(typep owl:Class rdfs:Class) -> t

(subtypep owl:Class rdfs:Class) -> t

In the CLOS perspective, owl:Class is also a metaclass as well as rdfs:Class,
because it is a subclass of rdfs:Class. The class in CLOS defines slot struc-
tures or the role existence in its instances. Thus, the above axioms involve
that owl:Class inherits the roles for rdfs:Class instances and rdfs:Resource in-
stances (rdfs:Resource is a superclass of rdfs:Class). Namely, the roles such as
rdfs:comment, rdfs:label, and rdfs:subClassOf can be attached to instances of
owl:Class.

However, there exist some ambiguities to include OWL vocabularies among
RDFS vocabularies. We set several axioms in addition to the defined ones in
the OWL definition file. See Table 1 in Appendix. Axiom1 is a compromise
between OWL theory and the reality. In OWL-Full theory, owl:Thing is unified
to rdfs:Resource, and then we cannot distinguish them. However, axiom1 is
needed in reality, just same as owl:Class is identified to a subclass of rdfs:Class
in the OWL definition file. Axiom2 is crucial for OWL-Full. The instances of
owl:Class inherits the roles of owl:Thing (and rdfs:Resource). Thus, every class
in OWL can have role owl:sameAs, owl:differentFrom, etc., as OWL individuals.
11 http://www.w3.org/2002/07/owl.rdf



6

3.2 Anonymous Restriction Classes for Properties

The OWL object-centered expressions look like objects rather than RDF graphs,
while they still obey RDF syntax and semantics. Therefore, the property restric-
tions in OWL/RDF turn out anonymous classes as instances of owl:Restriction.
Then, the subjective CLOS object in the expression is defined as a subclass of
the restriction classes that appears within rdfs:subClassOf or owl:intersectionOf
representation forms.

In the CLOS perspective, a subclass inherits roles that exist in its super-
classes, so it is reasonable that an anonymous restriction class, which provides
the information of property value constraint, is placed at the superclass position
of the subjective CLOS object. The information of restriction is inherited and
shared by all instances of the subclasses. The slot information for instance such
as value restriction (owl:allValuesFrom) for CLOS slots are defined in the direct
class or its superclasses of an instance, and the information is stored into the
CLOS slot definition objects that belong to the defined class.

The CLOS native type facet in the slot definition is utilized to realize the
value restriction (owl:allValuesFrom) and the existential restriction (owl:someValuesFrom)
in OWL. On the other hand, in order to implement cardinality restrictions for
property value (owl:maxCardinality, owl:minCardinality, and owl:cardinality),
we have introduced new slot facets, mincardinality and maxcardinality, into
the slot definitions. If there exist multiple pieces of information upon a property
with same restriction but different values among superclasses, they are collected
and reduced to the most special one according to the monotonicity principle.
For instance, the most special concepts are computed for the value restriction
or the existential restriction and the maximum mincardinality and minimum
maxcardinality are calculated for the cardinality restriction. When SWCLOS
creates new instances, those constraints stored in the effective slot definition
does work as constraints in instance creation. Thus, the satisfiability-checking
for slot-value is performed in instance creation.

3.3 Axiomatic Complete Relations

Among many properties in OWL, only owl:intersectionOf, owl:unionOf,
owl:complementOf, and owl:oneOf make axiomatic assertions. In other words,
these properties define the complete equivalency upon the binary relation of con-
cepts. For example, the following asserts the definition of WhiteBordeaux from
the right-hand side to the left-hand side, and if something is a Bordeaux and
WhiteWine, it is concluded to be a WhiteBordeaux.

WhiteBordeaux ≡ Bordeaux u WhiteWine

Similarly, the following assertion defines WineColor, which has the enumer-
ative membership of White, Rose, and Red, so that the instance of WineColor
is exactly one of the three, and not to be the others.

WineColor ≡ {White Rose Red}
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Therefore, it is not necessary to mind the open world assumption upon such
axiomatic complete relation properties. If we find the right-hand side of such
equation matches the database, then we may conclude the left-hand side without
worry about other statements.

See the following example. SWCLOS concludes that QueenElizabethII should
be a woman, because it is asserted that a person who has gender female is a
woman, and it is also asserted that QueenElizabethII is an instance of Person
and hasGender Female. Here note that SWCLOS proactively made the entail-
ment without demand or query from users.

(defIndividual Female (rdf:type Gender) (owl:differentFrom Male))

-> #<Gender Female>

(defResource Person (rdf:type owl:Class)

(owl:intersectionOf

Human

(owl:Restriction (owl:onProperty hasGender)

(owl:cardinality 1)))) -> #<owl:Class Person>

(defResource Woman (rdf:type owl:Class)

(owl:intersectionOf

Person

(owl:Restriction (owl:onProperty hasGender)

(owl:hasValue Female)))) -> #<owl:Class Woman>

(defIndividual QueenElizabethII (rdf:type Person)

(hasGender Female)) -> #<Woman QueenElizabethII>

3.4 Substantial Properties and Non-Substantial Properties

There are many properties that rule the inclusiveness of concepts, i.e., rdfs:subClassOf,
owl:intersectionOf, owl:unionOf, owl:equivalentClass, owl:equivalentProperty, etc.
From the viewpoint of DL, they have same strength for subsumption decidabil-
ity. However, from the viewpoint of Ontology Engineering and Software En-
gineering, we have to discriminate substantial ones and non-substantial ones
for ruling subsumption. Borgida [Borgida2003] argued that ones should deal
with individual objects that remain related rather than volatile references. Mi-
zoguchi [Mizoguchi2004] has claimed that the IS-A relation (the substantial
sorts) should comply with single inheritance from the viewpoint of Ontology
Engineering, whereas an object may have multiple roles (the non-substantial
sorts). Kaneiwa and Mizoguchi [Kaneiwa2005] developed the formal ontology
on property classification and extended Order-Sorted Logic onto the property
classification.

It is also important from the ontology and database maintainability to distin-
guish persistent relations and temporal relations. In SWCLOS, rdfs:subClassOf
relation is mapped onto class-subclass relation, and a CLOS object as rdfs:subClassOf
property value is additionally placed in the direct-superclasses-list slot of the
class object. However, in case that a property p1 is a subproperty of or a equiv-
alent property of rdfs:subClassOf, whether should we place the p1’s value into
the direct-superclasses slot in the class or not? In other words, what property in
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OWL should cause the structural variation in the CLOS class-subclass relation,
and what property should cause subsumption reasoning without the structural
variation? In SWCLOS, we specified that rdfs:subClass, owl:intersectionOf, and
owl:unionOf should cause the variation, but owl:equivalentClass, owl:equivalentProperty
and other properties, including subproperties and equivalent properties of rdfs:subClass,
owl:intersectionOf, or owl:unionOf, should affect the inference but not the struc-
tural variation.

Conversely, we should define the substantial and persistent subsumption with
rdfs:subClassOf, owl:intersectionOf, and owl:unionOf, and the non-substantial
subsumption should be defined through other properties. The substantial sub-
sumption may cause the proactive entailment, but the non-substantial subsump-
tion should not cause any structural variation in the entailment. Thus, such
discrimination of substantial and non-substantial subsumption allows us to add
and delete relations and keeps it easy to maintain ontologies.

3.5 Extended Structural Subsumption Algorithm

The structural subsumption algorithm is described as follows [Baarder2003] for
the FL0 level, which allows only conjunction (C u D) and value restriction
(∀R.C).

Let

A1 u . . . uAm u ∀R1.C1 u . . . u ∀Rn.Cn

be the normal form of the FL0-concept description C, and let

B1 u . . . uBk u ∀S1.D1 u . . . u ∀Sl.Dl

be the normal form of the FL0-concept description D, then C v D iff the fol-
lowing two conditions hold:
(1) For all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Aj v Bi

(2) For all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n such that Si = Rj and Cj v Di

The substantial inclusiveness is computed through the CLOS class-subclass
relationship, and the non-substantial inclusiveness is deduced by the extended
structural subsumption algorithm. The top concept > (owl:Thing) substantially
subsumes every concept in the CLOS class-subclass relation, but the bottom con-
cept ⊥ (owl:Nothing) is virtually subsumed by other concepts through this ex-
tended structural subsumption algorithm. We extended the above structural sub-
sumption algorithm in the FL0 level to what includes disjointness(owl:disjointWith),
negation(owl:complementOf), equivalency(owl:sameAs, owl:equivalentClass,
owl:equivalentProperty), functional and inverse-functional relation(owl:Functional-
Property and owl:InverseFunctionalProperty), full existential restriction(owl:some-
ValuesFrom), filler restriction(owl:hasValue), and number restriction(owl:max-
Cardinality, owl:minCardinality, and owl:cardinality) as follows.
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1. If C is ⊥, then C v D for any D, where D ∈ owl:Class.
2. If D is >, then C v D for any C, where C ∈ owl:Class.
3. If D is ⊥, then ¬(C v D) for any C, where C ∈ owl:Class.
4. C̃ denotes a member of the equivalence group of C. If C̃ v D̃ (substantially),

then C v D (inferred), where {C,D} ∈ owl:Class.
5. 6∼= denotes complement relation in complementOf. If C̃ 6∼= D̃, then ¬(C v D).
6. Collect all substantially subsuming concepts and restrictions (all of CLOS

superclasses) for each C̃ and each D̃, instead of C and D, and do the struc-
tural comparison as follows. Hereafter, use the notation such as A1 u . . . u
Am u∀R1.C1 u . . .u∀Rn.Cn for C̃ and B1 u . . .uBk u∀S1.D1 u . . .u∀Sl.Dl

for D̃, i.e. in case of value restrictions.
R̄ denotes a member of equivalent property group of R and ≈ denotes the
equivalency in equivalentProperty. For all i, 1 ≤ i ≤ k, if there exists j, 1
≤ j ≤ m such that Aj v Bi, and for all i, 1 ≤ i ≤ l, there exists j, 1 ≤ j ≤ n
such that S̄i ≈ R̄j and the followings hold, then C v D.
1) in case of value restriction (∀R̄j .Cj and ∀S̄i.Di), Cj v Di.
2) in case of full existential restrictions (∃R̄j .Cj and ∃S̄i.Di), Cj v Di. This
is incomplete but almost effective.
3) in case of (∀R̄j .Cj and ∃S̄i.Di), Cj v Di. This is incomplete but almost
effective.
4) in case of (∃R̄j .Cj and ∀S̄i.Di), Cj v Di. This is incomplete but almost
effective.
5) in case of filler restrictions (owl:hasValue, R̄j : aj and S̄i : bi), aj v bi.
Note that this is the inclusiveness among individuals. See Item 7.
6) in case of (R̄j : aj and ∀S̄i.Di), aj ∈ Di.
7) in case of (R̄j : aj and ∃S̄i.Di), aj ∈ Di. This overestimates the restriction
but it is useful in most cases.
8) in case of cardinality restriction (≥ nR̄j , ≤ nnR̄j and ≥ mS̄i, ≤ mmS̄i),
n ≥ m, nn ≤ mm. This is incomplete with the combination of full existential
restriction.

7. Ċ denotes a member of sameAs group of C and .= denotes the equivalency
in sameAs relation. If Ċ

.= Ḋ, or Ċ is transitive-lower than Ḋ on a shared
transitive property, then C v D, where {C,D} ∈ owl:Thing. Note that
the functional property entailment rule rdfp1 and the inverse functional
property entailment rule rdf2 in [Horst2005] are used here.

Where Procedure 4 includes the performance of the subsumption test in
RDFS semantics and the relation of owl:intersectionOf and owl:unionOf in OWL
universe. Procedure 7 treats objects as individuals, including OWL classes. Obvi-
ously, this algorithm involves the recursion, but the calculation terminates. It is
because CLOS prevents the terminological cycle in subsumption (ex. C v D and
D v C). While the occurrence cycle happens in chase of definitions with the com-
bination of rdfs:subClassOf and owl:unionOf (ex. B v C and C ≡ AtB), where
the chase along definition route causes ascending and descending movements in
subsumption relation, the break down of owl:unionOf into the superclasses list
in Procedure 6 prevents to happen such infinite cycle calculation. This extended
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structural subsumption algorithm is incomplete for the existential restriction,
but useful as OWL reasoning for most cases in practice.

3.6 Satisfiability Check

The proactive entailment reduces the load of satisfiability check. For example,
when programmers attempt to define an object ambiguously (to define an ob-
ject to a more abstract class), if the domain and range definition is available,
then SWCLOS defines an object more specifically (defines an object to a more
special class), with fitting the domain and range restriction. Nevertheless, the
satisfiability check is useful to prevent programmers from importing bugs into
ontologies. We implemented the domain and range checking, value restriction
checking, filler restriction checking, cardinality checking, disjoint-pair checking,
etc. Additional unsatisfiability rules to the OWL definition are summarized in
Table 3 in Appendix.

3.7 OWL Entailment Rules

We note that the complete set of OWL entailment rules are not known, although
ter Horst [Horst2004,Horst2005] has been investigating to make them clear. We
emphasize that the prover of Tableau Algorithms is insufficient for the proactive
entailment. The work of DL prover is to test the membership of individuals and
the subsumption of classes. Precisely, it involves satisfiability check of concepts
with the refutation. It implies to make a query for the prover. However, in
order to perform proactive entailments, we need to sense the situation in which
an entailment is deductive, and we must know what query is effective in the
situation. In other words, if we know entailment rules, we can set an appropriate
query to the prover in the situation, or we can proactively perform the entailment
rules by properly applying the rules in the situation, or we can procedurally
encode the entailment rules in software tools.

Hereafter in this subsection, many entailment rules in OWL are introduced
and discussed how those rules are implemented in SWCLOS. The entailment
rules that is denoted rdfp** represent P-entailment rules in [Horst2005]. The
others denoted rule* are published here. See Table 2 in Appendix.

SameAs Group, EquivalentClass Group, EquivalentProperty Group:
sameAs relation is reflexive (rdfp6 in [Horst2005] ) and transitive (rdfp7). So, all
related individuals make one group upon sameAs. In SWCLOS, the group infor-
mation that is a collection of related individuals is registered to each individual
of group members. The equivalentClass is also reflexive (rdfp12a) and transi-
tive (rdfp12c). Therefore, the same machinery is adopted for equivalentClass
as sameAs. equivalentProperty is also the same. Such information is used in
the subsumption calculation as explaned in Subsection 3.5.
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DifferentFrom Pairs and DisjointWith Pairs: On the other hand, differentFrom
is reflexive but not transitive. Therefore, the pairwise relation is not resolved into
one group. In SWCLOS, the other member of a pair is registered to each indi-
vidual. This is same for disjointWith.

If a class is disjoint with another class, the subclasses of each disjoint su-
perclass are also disjoint each others. See rule4 in Table 2, which is imple-
mented in function owl-disjoint-p. If disjoint classes are specified as multiple
classes in an instance definition, SWCLOS signals an alarm of unsatisfiability.
See unsatisfiability3 and 4 in Table 3.

FunctionalProperty: The entailment rule is described by rdfp1 in [Horst2005].
SWCLOS maintains the bookkeeping of the inverse of FunctionalProperty.
Then, owl-same-p infers this equality on individuals.

InverseFunctionalProperty: The semantics and the entailment rule is just in-
versely same as functionalProperty. See rdfp2. owl-same-p infers this equal-
ity on individuals.

Intersection of Concepts: If A ≡ C1 u . . . u Cn (where i = 1, . . . , n), then
A v Ci. SWCLOS adds every class Ci into the direct-superclasses list of class A
from owl:intersectionOf assertions.

Union of Concepts: If A ≡ C1 t . . . t Cn (where i = 1, . . . , n), then Ci v A.
SWCLOS adds class A into the class-superclasses list of every class Ci from
owl:unionOf assertions.

Complement Concepts: The complement relation is reflexive (see rule5) and
the entails the disjointedness (rule6). SWCLOS registers one of the pair to both
ones for complementness and disjointedness.

3.8 Calculation Efficiency of SWCLOS

The amount of loading time for Food Ontology and Wine Ontology is 2 seconds,
and the amount of loading time for Lehigh University Benchmark (LUBM)12

is 35 seconds for the data of 3235 persons + 659 courses + 6 departments +
759 university in Allegro Common Lisp 8.0 on MS-Windows 2000 with Pentium
4 (CPU 2.6GHz) and 1GB RAM. There is no stress to reply to the LUBM 14
queries for the above loaded data by lisp codes in ordinal programming manner.

4 OWL-Full and Meta-Modeling

In this section, we demonstrate with two examples why the meta-class is needed
and how it is used for OWL-Full.
12 http://swat.cse.lehigh.edu/projects/lubm/
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4.1 Meta-Class for Role and Filler Attachment

Suppose that wine brands are ID-numbered by International Wine Society. Since
there are mixed together brand wines such as vin:Zinfandel with non-brand wine
concepts such as vin:CaliforniaWine in Wine Ontology, we must distinguish them
at first. Even if we introduce two new classes as a subclass of vin:Wine, namely
BrandWine of which instances have an ID-number and NonBrandWineConcept
that does not provide ID-number, we cannot attach an ID-number to wine classes
such as vin:Zinfandel (and can attach an ID-number to wine instances such as
vin:ElyseZinfandel). Because a brand wine class should be a subclass of Brand-
Wine but should not be an instance of BrandWine. In order to attach a role
and filler to a class, a class of the class is required. The solution in SWCLOS is
shown below.

(defResource BrandWine (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class BrandWine>

(defResource NonBrandWineConcept (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class NonBrandWineConcept>

(defProperty hasIDNumber (rdf:type owl:ObjectProperty)

(rdfs:domain BrandWine)

(rdfs:range xsd:positiveInteger)) -> #<owl:ObjectProperty hasIDNumber>

(defResource vin:Zinfandel (rdf:type BrandWine)

(hasIDNumber 12345)) -> #<BrandWine vin:Zinfandel>

(get-form vin:Zinfandel)

-> (BrandWine vin:Zinfandel (rdf:about #<uri http://www.w3.org/TR ...

(rdfs:subClassOf (owl:hasValueRestriction ...

...

(owl:intersectionOf vin:Wine

(owl:hasValueRestriction ...

(owl:cardinalityRestriction ...

(hasIDNumber 12345))

4.2 Treatment of Instance as Class

In the OWL-S specification13 for Semantic Web Services, the range of property
process:hasPrecondition is expr:Condition, and an instance of expr:Condition
may have a value of expr:expressionBody. Suppose that we have many kinds of
conditions and need to classify actual conditions to one of these condition classes.
For example, we have many operational modes in the rocket launch operation
[Misono2005], and each operational mode selects applicable services through
preconditions. Note that an expr:expressionBody is different each other by
operational modes and it identifies each condition class. Here we need to attach
expr:expressionBody value to class-like preconditions, in order to record actual
conditions in operation and store them as instances of each operational condi-
tions. Please recall that expr:expressionBody value may be attached to an
instance of but cannot be attached to expr:Condition per se. In SWCLOS, the

13 http://www.daml.org/services/owl-s/1.1/
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problem is solved as follows. Here gxprocess:Precondition is a metaclass, since
it is a subclass of owl:Class. Thus, PipeCoolDownMode-, TankCoolDownMode-,
and RocketTankingMode-Precondition turn out classes within the boundary
of the schema of OWL-S 1.1.

(defResource gxprocess::Precondition (rdf:type owl:Class)

(rdfs:comment "This is a meta-class for precondition.")

(rdfs:subClassOf owl:Class expr:Condition))

(defResource gxprocess::OperationModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "operation mode precondition")

(rdfs:subClassOf expr:Condition gxdomain::OperationMode)

(expr:expressionBody ... ))

(defResource gxprocess::PipeCoolDownModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "pipe cool-down mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::PipeCoolDownMode)

(expr:expressionBody ... ))

(defResource gxprocess::TankCoolDownModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "tank cool-down mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::TankCoolDownMode)

(expr:expressionBody ... ))

(defResource gxprocess::RocketTankingModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "rocket tanking mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::RocketTankingMode)

(expr:expressionBody ... ))

5 Conclusion

Description Logics provide the means to formalize the application domain, and
OWL becomes a modeling language for domain modeling in Software Engineer-
ing. SWCLOS is a language for ontology description in OWL, and simultaneously
it is an Object-Oriented Programming language on Common Lisp. Therefore,
programmers may exchange their idea on software systems on the firm base of
Description Logic, and then they can instantiate the formalization and develop
working lisp programs on the continuous ground of CLOS. In this paper, we
introduced SWCLOS and explained OWL reasoning in SWCLOS. Strictly, the
structural subsumption algorithm extended to OWL is still incomplete for the
existential restriction, but the system works effectively in most cases of pratical
use. SWCLOS provides OWL-Full performance with meta-modeling in CLOS,
and we demonstrated some examples in OWL-Full programming. The incom-
pleteness in OWL reasoning caused by the existential restriction will be solved
in the future, by introducing First-Order Logic.
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A OWL Axioms and Entailment Rules

Table 1. Additional OWL Axioms for SWCLOS

axiom1 Thing subClassOf Resource

axiom2 Class subClassOf Thing

axiom3 FunctionalProperty type Class

axiom4 InverseFunctionalProperty type Class

axiom5 FunctionalProperty disjointWith InverseFunctionalProperty

Table 2. Entailment Rules in OWL for SWCLOS

If Then

rule0 r type Restriction r subtype Resource

rule1a v p w v subtype Thing

rule1b v p w w subtype Thing

rule2a u intersectionOf {vj . . . } vj type Class

rule2b u unionOf {vj . . . } vj type Class

rule3 x distinctMembers {xj . . . } xj type Thing

rule4 u disjointWith v
u′ subClassOf u
v′ subClassOf v u′ disjointWith v′

rule5 u complementOf v v complementOf u
rule6 u complementOf v v disjointWith u
rule7 u oneOf {xj . . . } xj type u
rule8 v allValuesFrom w

v onProperty p
p range u w subtype u

Table 3. Unsatisfiability in OWL for SWCLOS

Unsatisfiable Conditions

unsatisfiability1 u oneOf { xi . . . }
y type u
y differentFrom xi

unsatisfiability2 x differentFrom y
x sameAs y

unsatisfiability3 u disjointWith v
v equivalentOf u

unsatisfiability4 u disjointWith v
x type u
x type v


