
Physical concept ontology for the knowledge intensive

engineering framework

Masaharu Yoshiokaa,*, Yasushi Umedab, Hideaki Takedac, Yoshiki Shimomurad,
Yutaka Nomaguchie, Tetsuo Tomiyamaf

aHokkaido University, N14 W9, Kita-ku, Sapporo-shi, Hokkaido 060-0814, Japan
bTokyo Metropolitan University, Tokyo 192-0397, Japan

cNational Institute of Informatics, Tokyo 101-8430, Japan
dThe University of Tokyo, Tokyo 113-8654, Japan

eOsaka University, Osaka 565-0871, Japan
fDelft University of Technology, AA Delft 2600 The Netherlands

Abstract

Knowledge intensive engineering aims at flexible applications of a variety of product life cycle knowledge, such as design, manufacturing,

operations, maintenance, and recycling. Many engineering domain theories are organized and embedded within CAD and CAE tools and

engineering activities can be formalized as modeling operations to them. Since most of domain theories deal with the physical world and can

be associated with physical concepts, a physical concept ontology can form a common ontology to integrate engineering models that are

formed based on domain theories. This paper reports a physical ontology-based support system for knowledge intensive engineering called

Knowledge Intensive Engineering Framework (KIEF) to integrate multiple engineering models and to allow more flexible use of them. First,

the paper describes the physical ontology as the core of KIEF and an ontology-based reasoning system, called a pluggable metamodel

mechanism, to integrate and maintain relationships among these models. The pluggable metamodel mechanism uses a metamodel that

represents the designer’s mental model about a design object as a concept network model. The designer builds and decomposes a functional

hierarchy from functional specifications with an FBS (Function-Behavior-State) modeler. He/She then maps the functional hierarchy into a

metamodel using physical features that are building blocks for conceptual design. Then, the pluggable metamodel mechanism enriches the

information contained in the metamodel by using causal dependency knowledge about the physical world and by building and analyzing

various engineering models. We demonstrate the power of KIEF by illustrating a design case performed on KIEF.

q 2004 Published by Elsevier Ltd.

Keywords: Ontology; Engineering knowledge; Theory integration; Model integration; Design object modeling
1. Introduction

In modern engineering processes, design models play

crucial roles for designing and evaluating design solutions

Designers now actually use various design modeling

systems such as 3D-CAD and Finite Element Analysis

(FEA) systems in a repetitive loop. These models represent

the same design object and they are not independent of each

other; for example, mesh data for FEA is closely related to

shape data of a solid model. To manage consistency among
1474-0346/$ - see front matter q 2004 Published by Elsevier Ltd.

doi:10.1016/j.aei.2004.09.004

* Corresponding author. Tel./fax: C81 11 706 7107.

E-mail address: yoshioka@ist.hokudai.ac.jp (M. Yoshioka).
these models, to easily transfer data from one system to

another, and to propagate changes in one system to another,

we need an integrated design support environment.

A number of research efforts have been made to integrate

multiple design object models, beginning with support for

data exchange. Initial Graphics Exchange Specification

(IGES) [1] is a typical example of this standard mainly for

2D drawing layout and supports only format level data

exchange. The next level was the concept of product model

[2] that is now commonly used for model management

across a variety of applications. Standard for the Exchange

of Product model data (STEP) [3] defines a standard of

product models. In the 1990s, Computer Aided Engineering

(CAE) tools were integrated as extension modules into
Advanced Engineering Informatics 18 (2004) 95–113
www.elsevier.com/locate/aei

http://www.elsevier.com/locate/aei


M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–11396
the geometry-based CAD system, for example, CATIA [4]

and Pro/Engineer [5]. However, this was rather one-to-one

connection between a specific pair of CAD and CAE and

was by no means a universal integration mechanism. One

reason for this problem is the fact there is no truly

multipurpose universal product model.

Integration of multiple engineering object models has

two levels, viz. integration at data level and integration at

knowledge level. The former is correspondence of data

stored in various engineering object models, which comes

from the fact that these models represent the same design

object. With this, we can achieve consistency management

and propagation of changes in data values among multiple

engineering object models.

The latter results from deeper consideration about what

those models are based on. An engineering object model

focuses on a particular class of physical phenomenon and it

does represent any other phenomena. Because there is a

particular branch of physics (a background theory or a

domain theory) behind the phenomenon of interest, the

knowledge level description should be concerned with

terminology and concepts that this domain theory contains,

including such concepts as physical causal relationships and

conceptual dependencies. A design modeling system

embeds such a background theory and a design object

model described in this system can be associated with

concepts.

Handling and integrating engineering object models at

this knowledge level have advantages over the data level

integration. First, we can achieve true inter-operability of

different engineering object models. Even if there is no

direct correspondence between two models, the system

might be able to reason out correspondence or conversion

from one model to another using knowledge about domain

theories. Second, it becomes possible to support designers in

building, modifying, and using models at high intelligent

level. These advantages are maximized by having an

ontology-based reasoning. Understanding relationships

among these models at the conceptual level will result

from a clear ontological structure of engineering

knowledge.

In this paper, we propose a physical concept ontology to

build a large-scale engineering knowledge base as a kernel

of the Knowledge Intensive Engineering Framework

(KIEF) to support knowledge-intensive engineering [6].

Knowledge-intensive engineering is a new way to conduct a

variety of engineering activities, including design, manu-

facturing, operation, maintenance, and recycling, in which

knowledge accumulated in different engineering modeling

systems is used in a flexible and integrated manner. KIEF

can represent and manage relationships among knowledge

for particular design cases. This information is useful to find

out relationships among knowledge from multiple domains,

such as dynamics and electricity in a mechatronics design

case and to achieve multiple model integration at knowl-

edge level. While our earlier reports [7–9] cover many other
aspects of KIEF, the basis of the engineering ontology used

in the framework has not been previously presented.

Explicating the physical concept ontology is thus the main

theme of this paper.

The rest of this paper is divided into five sections.

Section 2 proposes a layered knowledge structure to

integrate multiple domain theories, which was established

in our past continuous effort to develop such a physical

concept ontology aiming at knowledge level integration. In

Section 3, the physical concept ontology and methodology

to integrate domain theories by using this ontology are

described. Section 4 illustrates a prototype system of KIEF

with an example. Section 5 compares our approach with

related work and Section 6 concludes the paper.
2. Engineering knowledge

2.1. Formalization of engineering activities

In engineering activities, engineers are faced with

various problems for which they need to access to a wide

variety of engineering knowledge To support this activity,

in KIEF we organize knowledge in the form of domain

theories (such as ‘electronics’ and ‘dynamics’) Based on

domain theories, we have also developed computational

support tools, such as CAD and CAE (we call these tools as

design modeling systems in this paper) to be used in the

engineering process.

However, since each domain theory has its own

terminology and concepts, communication among experts

in different domains is often difficult if not impossible.

There is also a tendency to describe a theory precisely with a

specific representation scheme for this particular theory,

avoiding the use of a general scheme, which makes

communication makes even more difficult. For example,

structural analysis of a mechanical component with a

complicated shape is carried out with Finite Element

Method (FEM) that is based on domain theory ‘strength

of material’. Similarly, the control model of a mechanical

system is based on domain theory ‘control engineering’.

Unfortunately, between these two, there is hardly any

common concept except for force and stiffness. The

necessary transportation of data, from a geometric modeling

system to FEM and to the control simulation system, is

difficult if we do not have deep understanding about these

two theories and we only have data level integration.

Our aim is to build a general framework to integrate

multiple design object models not only at the data

integration level but also at the knowledge level of domain

theories. The knowledge level integration will allow

integrated use of multiple design modeling systems. Since

each design modeling system is associated with a domain

theory that defines terminology and concepts, relationships

among systems are maintained by using these terminology

and concepts.



Fig. 1. The model of engineering knowledge structure.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 97
From the viewpoint of information processing, engin-

eering activities can be formalized as model operations

within design modeling systems. As long as the designer is

interested only in computation results, usually it is not

required to have deep understanding about the domain

theory embedded inside the modeling system. However, for

instance, once there is a trade-off problem over results of

different CAE systems, a designer should understand

relationships among the models represented by these CAE

systems. For this purpose, integration at the data level is

insufficient, because this will boil down to understanding of

relationships among their domain theories, such as physical

causality relationships.

2.2. Structure of engineering knowledge

Our model of engineering knowledge structure was

established through our past continuous research efforts.

Interested readers should refer to [7,9,10,11]. This model

assumes a layered structure depicted in Fig. 1.

The lowest layer describes the syntax to represent the

knowledge. The upper layers describe semantics of
Fig. 2. Relationships between conce
the knowledge and both of the knowledge level integration

and the data level integration take place here. These layers

are divided into three sub-layers.

The first basic ontology layer provides the common

vocabulary (or terminology) to represent fundamental

physical concepts. These concepts have relationships

among them such as causality and super-sub hierarchy.

The concepts included in this basic ontology layer are used

to represent relationships among design modeling systems.

The data level integration is based on data correspon-

dence of the same data in different design modeling systems.

To do this, a conceptual model of the design object is built at

this basic ontology layer. This conceptual model is called a

‘metamodel’ [10,12] and represents the design object as a

network of concepts.

The second middle layer contains knowledge about

modeling systems and model building knowledge to

describe, e.g. how to use each of these modeling systems,

including input and output conditions of these systems. We

call this sort of knowledge ‘modeling knowledge.’ The third

upper layer describes modeling system specific knowledge

that is embedded in each modeling system [7].

The basic principle of the metamodel concept is

explained here. Fig. 2 shows the relationship among

different design models for the analysis of the deformation

of a ‘Beam’ that is used for the head design of a magnetic

hard disk. The top level, domain theory level, is a set of

design modeling systems that embed background level

knowledge. The bottom half of Fig. 2 shows the metamodel

of this design object with the vocabulary defined in the basic

ontology. Then, modeling knowledge is used to define

relationships between concepts in the metamodel and those

in a design modeling system. For instance, the metamodel
pts used in different models.



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–11398
represents such a statement as ‘Beam’ is ‘connected’ to

‘head.’

An example of modeling knowledge is a list of concepts

that can be handled with a design modeling system, together

with how to translate data in the metamodel into data for the

design modeling system. In this case, a solid model deals

with concepts ‘Solid’, ‘Length’, and ‘Volume’, shown by

dotted line nodes in the metamodel. A deformation analysis

model deals with concepts ‘Length’ and ‘Force’, depicted

by gray-colored nodes.

Through the metamodel, we can find out relationships

among attributes in the solid model and those in the

deformation analysis model. The relationships among

attributes in these two models include direct ones, such

as relationships between ‘Length’ in the solid model and

‘Length’ in the deformation analysis, and indirect ones,

such as relationships between ‘Volume’ of ‘Head’ in the

solid model and ‘TransmittedForce’ in the deformation

analysis model. The latter requires additional knowledge

such as ‘equilibrium of force’ and ‘mass equals volume

multiplied by density’. This indirect correspondence is

more flexible and useful than direct ones. To do this, we

need a physical phenomenon model that deals with the

causal relationships about force. In addition, since

the value of ‘TransmittedForce’ may change when the

designer modifies the shape of ‘Head,’ it is necessary to

build a dependency network among these data.

The metamodel realizes both direct and indirect data

correspondences for data level integration through this

mechanism. It also realizes knowledge level integration

using the basic ontology and modeling knowledge,

resulting in more flexible model management. For

example, through direct correspondences among con-

cepts, the metamodel tells us that data for ‘Length’ in the

solid model and data for ‘Length’ in the deformation

analysis model should be same. It also reasons out that

data for ‘TransmittedForce’ in the deformation analysis is

calculated from data for ‘Volume’ in the solid model by

using knowledge about force. In this way, knowledge

about physical causal dependency allows a more flexible

use of different domain theories.
3. Layered knowledge structure for the knowledge
intensive engineering framework (KIEF)

3.1. Engineering activities supported by KIEF

KIEF is a framework to integrate design modeling

systems that has embedded knowledge about domain

theories. KIEF also maintains consistency among integrated

design object models. As we discussed in the previous

section, KIEF uses physical concept ontology, modeling

knowledge, and the metamodel for this integration.

This section illustrates engineering activities with KIEF

and discusses types of knowledge that are required for
KIEF. The following is an outline of a design process with

KIEF.
(1)
 Construction of an initial metamodel

First, an initial metamodel must be built with, for

example, a function modeling system such as FBS

(Function-Behavior-State) modeling [13]. This initial

metamodel should have basic information about the

design object, such as its conceptual structure and

preliminary layout (topological connection), but not

necessarily attribute information, such as shape, at this

stage.
(2)
 Enrich metamodel information

The initial metamodel does not necessarily contain

sufficient information about the design object for further

processes. We need enrich information of the metamo-

del with such knowledge as causality knowledge to

reason out feasible physical phenomena that may occur

to the design object.
(3)
 Synthesis and analysis based on design modeling

systems

We evaluate design solutions using different design

modeling systems. In so doing, KIEF assists the

modeling process by using input and output information

about design modeling systems and maintains the

consistency among different design object models.
The first two activities are operations in the basic

ontology layer in Fig. 1. The third step uses the knowledge

in modeling systems in Fig. 1 through modeling operations

(operations to modeling systems). To control modeling

processes (such as model building, model evaluation, etc.),

the modeling knowledge in Fig. 1 is used. Modeling

knowledge corresponding to a modeling system typically

contains concepts necessary to build a model used as an

input for this system and concepts to be obtained as a result

of modeling (or computation).

The following is the summary of the knowledge of KIEF

and will be explained in detail in the subsequent sections.
†
 Basic vocabulary

Physical concept ontology: This ontology is the basic

ontology for representing a design object model

(Section 3.2).

Physical feature: Physical feature library serves as a

mechanism library containing building blocks for

building a metamodel and to find a causal relationship

among entities to check whether or not some physical

phenomena may occur to the design object

(Section 3.3).
†
 Modeling knowledge

Knowledge about a modeling system: This knowledge

describes input and output information of the model-

ing system (Section 3.4.1).

Model building knowledge: This knowledge supports

the construction of a design object model in

the modeling system. In this paper, we introduce



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 99
model library as an example of this kind of knowledge

(Section 3.4.4).
3.2. Physical concept ontology

Integrating multiple design object models means knowl-

edge level integration of domain theories, which requires

explicit representation of physical phenomena. To do so, the

physical concept ontology is introduced. This is the most

fundamental knowledge component in the basic ontology

layer and is stored in a knowledge base called ‘concept

base’.

The concept base includes the following five conceptual

categories.
Entity:
 An entity represents an atomic

physical object.
Relation:
 A relation represents a relationship

among entities to denote a static

structure.
Attribute:
 An attribute is a concept attached to

an entity and takes a value to

indicate the state of the entity.
Physical phenomenon:
 A physical phenomenon designates

physical laws or rules that govern

behaviors.
Physical law:
 A physical law represents a simple

relationship among attributes.
Each domain theory has its own concept system and the

details of its concept definitions may be different. For

example, the dynamics theory requires a simple description

of entity; i.e. an entity in terms of mass and inertia. The theory

for gear motion analysis requires specific concept categories

to represent different types of gears. The theory for electric

circuit requires totally different concept categories, such as

conductor, resistance, capacitance, and inductance. The

concept base organizes these concepts in an abstract-

concrete class hierarchy with multiple inheritances; i.e. we

can define multiple abstract super class concepts for one

concept. This ontological structure allows various domain

theories to share these concepts, while specialized concepts

can be incorporated without difficulties into the concept base.

In the following, each conceptual category is explained.

Formal definitions of these concepts are given in Appendix A.

3.2.1. Entity

An entity represents an atomic physical object In order to

describe the abstractconcrete relationship among concepts,

we define an entity concept with its “name” and “supers”

that is for defining abstract concepts of a defined one. The

concept “Entity” is the most abstract concept in this

category. An example of an entity is as follows.
Name:
 Gear(?e)
Supers:
 MechanicalParts(?e),Mass(?e)
3.2.2. Relation

A relation represents a relationship among entities to

denote static structure. We define a relation concept with its

“name” and “supers” as the entity concept. The concept

“Relation” is the most abstract concept in this category.

In addition to these two slots, we need to define a relation

with references to entities. We use “HasRelations” slot and

“HasRelation” predicate for this purpose. The first term of

the HasRelation atom is the name of the defined relation and

other terms are the reference names of the entities.

Therefore, HasRelation term that is used to define the

relationships among n entities has nC1 terms. This

definition is also used for explaining whether this concept

is directional (e.g. “on”) or not (e.g. “connect”). If a relation

concept is directional, we describe one predicate logic atom

(e.g. HasRelation(on, upper, lower)). If it is not directional,

we describe two or more predicate logic atoms to represent

equivalent relations (e.g. HasRelation(connect, object1,

object2), HasRelation(connect, object2, object1)).
Name:
 Meshed(?meshed)
Supers:
 Relation(?meshed)
HasRelations:
 HasRelation(?meshed, ?gear1, ?gear2), Has-

Relation(?meshed, ?gear2, ?gear1)
3.2.3. Attribute

An attribute is a concept attached to an entity and takes a

value to indicate the state of the entity We define an attribute

concept with its “name” and “supers.” The concept

“Attribute” is the most abstract concept in this category.

In addition to these two definitions, we use “Statements”

to describe additional information. Statements includes

dimension of the attribute and definitional relation with

other attributes (e.g. acceleration is a time differential of

velocity).
Name:
 Acceleration(?a)
Supers:
 Attribute(?a)
Statements:
 DifferentialOf(?a, Velocity, Time), UnitOf(?a,

?, ’m/s2̂’), DimensionOf(?a, (L M T I Temp), (1

0–2 0 0))
3.2.4. Physical phenomenon

A physical phenomenon designates physical laws

that govern behaviors We define a physical phenomenon

concept with its “name” and “supers.” The concept

“PhysicalPhenomenon” is the most abstracted concept

in this category and all concepts should be a concrete

concept of it.

In many cases, a physical phenomenon represents

relationships among attributes of entities. “Entities”



Fig. 3. Example of a physical feature.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113100
and “Attributes” define related entities and attributes of the

defined phenomenon. For a complicated physical phenom-

enon that is difficult to represent as a relationship among

attributes, we can define it by using only “Entities”

information. “Statements” describe the relationships

among entities, attributes, and the phenomenon.

In this slot, “OccurTo” predicate describes the

relationship between the phenomenon and related entities.

“HasAttribute” predicate describes the relationship among

related attributes and related entities.

In order to represent complicated phenomena affected by

multiple physical laws, we divide the definition of physical

phenomenon and physical law, such as Newton’s law.

“PhysicalLaws” is used to describe related physical laws.
Name:
 LinearMotion(?p)
Supers:
 Motion(?r)
Attributes:
 Force(?f), Mass(?m), Position(?pos), Accel-

eration(?acc), Velocity(?vel)
Entities:
 Mass(?object)
PhysicalLaws:
 SecondLawOfNewtonLaws(?f, ?m, ?acc)
Statements:
 OccurTo(?p, ?object), HasAttribute(?f,

?object), HasAttribute(?m, ?object), HasAt-

tribute(?pos, ?object), HasAttribute(?acc,

?object), HasAttribute(?vel, ?object)
3.2.5. Physical law

A physical law represents a simple relationship among

attributes “Name” and “Attributes” define the name and

related attributes of the defined physical law, respectively.

“Expression” defines the relationship among attributes by

using mathematical equation.
Name:
 SecondLawOfNewtonsLaw
Attributes:
 f_Force, m_Mass, a_Acceleration
Expression:
 Sigma(f)Zm*a
3.3. Building a metamodel

In KIEF, a metamodel represents a design object as a

network of concepts At the beginning of an engineering

process (such as design), an initial metamodel will be built.

This is done in the following manner. First, a designer picks

up physical concepts relevant to the design object from the

concept base and instantiates them. A metamodel is built as

a network of these instantiated physical concepts. However,

building a metamodel from scratch is not an easy task, as

this metamodel quickly gets complicated. It is better to

prepare building blocks for physical entities and physical

causality knowledge that finds causal relationships among

entities.

For this purpose, the “physical feature” library serves as

a mechanism library containing building blocks to build a

metamodel. Just like geometric features [14] used as
building blocks to define mechanical components in a

geometric CAD system, physical features make it easier to

define complicated design objects that involve physical

phenomena. A physical feature is a network of concepts that

includes a set of physical phenomena and conditions (such

as existence of entities and related physical phenomena) for

invoking the phenomena.

Fig. 3 shows an example of a physical feature that

represents a mechanical configuration consisting of a gear

and worm gear pair for rotational power transmission,

together with related physical phenomena. All nodes are

instances of concepts in the concept base (the class name

and instance name are described in each node in Fig. 3).

Rectangular nodes represent entities and rounded rectangu-

lar nodes correspond to relations. Oval nodes represent

physical phenomena. Non-directed links from physical

phenomena and relations correspond to reference from

each concept (e.g. relation ‘Meshed’ requires two entities

and ‘WormGear’ and ‘Gear’ are reference objects). Directed

gray links between physical phenomena are causal relation-

ship links.

The designer can built an initial metamodel by explicitly

combining physical features. However, this initial model

may not contain sufficient information for subsequent

processes to, for example, evaluate performance with a

design modeling system, because this design object may

invoke physical phenomena besides those that can be

derived from the information included in the physical

features explicitly selected by the designer. In other words,

there could be unintended physical phenomena. Therefore, a

reasoning mechanism must detect these unintended physical

phenomena by checking hidden or implicit causal

relationships.

The metamodel system reported in [12] had a mechanism

to do so based on Qualitative Process Theory (QPT)

[15]. However, in this old metamodel system, the descrip-

tion of physical phenomena lacked generality. For example,

a physical phenomenon ‘RotationalTransmission’ that

may occur to different types of mechanisms had to

be defined individually for these different

mechanism such as ‘RotationalTransmissionByGearPair,’

and ‘RotationalTransmissionByPulley,’ and they were all

recognized differently.



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 101
KIEF solved this problem by improving the standard

QPT based reasoning in the following two points. First, the

occurrence of a physical phenomenon is checked by the

prerequisites of physical features, rather than the prerequi-

sites of the physical phenomenon. KIEF uses the conditional

information of a physical feature (instead of a physical

phenomenon) as a prerequisite to check the occurrences of a

physical phenomena described in the feature.

Second, KIEF makes maximum use of the abstract-

concrete hierarchy of concepts stored in the concept base in

checking the occurrence of physical phenomena. This is

conducted by graph matching between the metamodel and

the prerequisites part of a physical feature. Every node in

these two networks belongs to an abstract-concrete

hierarchy, so for instance a physical phenomenon that can

happen to a class of entities may happen to entities

belonging to its subclass.

A physical phenomenon sometimes requires another

physical phenomena to get invoked. For instance, for

‘RotationalTransmission5’ and ‘Rotation6’ of the gear in

Fig. 3) to happen, the worm gear must be rotated (by an

external means) and ‘Rotation4’ should take place. In other

words, ‘Rotation6’ occurs, if and only if ‘Rotaion4’

happens, while within this physical feature itself there is

nothing actually invoke ‘Rotaion4.’ This means we need to

classify related physical phenomenon into two types. One is

physical phenomena that are invoked as a consequence of

this physical feature (e.g. ‘RotationalTransmission5’ and

‘Rotation6’ in Fig. 3). The other type is phenomena that are

necessary to check their conditions to see if this physical

feature can happen (e.g. ‘Rotation4’ in Fig. 3). By using

classification, we can treat a physical feature as knowledge

to check whether physical phenomena may occur or not.
Prerequisites: Conditions about entities and relations,

and physical phenomena that are used to check their

conditions. Needed to see if this physical feature happens

or not.
Consequence: Physical phenomena that are invoked by

this physical feature.
Table 1

Knowledge about a beam modeling system (Example)

Name of the slot Contents

Available concepts Beam, HingedSupport, ConcentratedForce,

DistributedForce, etc

Computable concepts ShearingForceDiagram, BendingMoment-

Diagram

Related concepts Entity, Relation, Force method

Data exchange Length of beam is calculated by using 2D

shape or solid model
3.4. Handling domain theories

3.4.1. Knowledge about a modeling system

As discussed in Section 2.2, we use design modeling

systems as sources for domain theories To utilize domain

theories that are embedded in design modeling systems such

as CAE, we need modeling knowledge that is used for filling

the gap between the concepts used in the metamodel and

knowledge in each modeling system (hatched area in

Fig. 1). We have already proposed the concept of

“pluggable metamodel mechanism [9] to connect a design

modeling system to KIEF.

The pluggable metamodel mechanism uses “Knowledge

about a Modeling system” to integrate design modeling
systems and to support building a design object model. To

connect a design modeling system, information about its

inputs and outputs is necessary. To support modeling

processes, knowledge for selecting related concepts from a

metamodel and knowledge about data exchange methods

are necessary. Therefore, knowledge about a modeling

system has the following four slots using concepts from the

concept base.
†
 Available concepts

This list contains concepts that are used for constructing

a model for this design modeling system (input concepts

of the design modeling system).
†
 Computable concepts

This list contains concepts that can be computed by using

the knowledge embedded in this design modeling system

(output concepts of the design modeling system).
†
 Related concepts

Concepts in this list are used to select related concepts

from a metamodel. Each concept in this list should be an

abstract concept of one or more concepts in the available

concepts.
†
 Data exchange method

This description is used to obtain data in a specific format

from this design modeling systems.

Table 1 is an example of a description about a beam

modeling system. ‘Force’ is an abstract (super) concept of

‘ConcentratedForce’, and ‘DistributedForce.’ By using the

related concept information, KIEF selects any force that is

an instance of concepts whose abstract class is ‘Force’; e.g.

‘GravityForce’ and ‘TransmittedForce.’ Since a model in

the beam modeling system should be described with

available concepts, any forces that are used to make a

model should be categorized into ‘ConcentratedForce’ or

‘DistributedForce.’
3.4.2. Integrating a design modeling systems into KIEF

The pluggable metamodel mechanism supports building

a design object model to be used for a particular design

modeling system, obtaining information from the metamo-

del of the design object In addition, the pluggable

metamodel mechanism stores and manages the computation

result to share it with other design modeling systems.



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113102
(1)
 Support building a design object model (i.e. input to a

design modeling system)

(a) Build an “aspect model.”

An aspect model is a subset of a metamodel, which

represents a design object model for a design

modeling system in the concept network level. To

build an aspect model, related concepts are used to

select candidate concepts. Then, available concepts

are used to actually build an aspect model.

(b) Build a design object model for a design modeling

system.

After building an aspect model, the pluggable

metamodel mechanism collects information to

build a design object model for the design modeling

system, which is more concrete than the aspect

model. A data exchange method is used to obtain

information from other design modeling systems. If

there is no information about the required concepts,

the pluggable metamodel mechanism tries to search

other design modeling systems that can compute

required information by looking up information

about computable concepts. In addition, KIEF also

allows a more flexible method to build a design

object model in a design modeling system by

combining model fragments, when a domain theory

is well organized enough to represent each knowl-

edge fragment as a model fragment that corre-

sponds to available concepts. For example, to use a

behavior simulation system based on analytical

equations, a model fragment corresponds to one or

more equations that represent a particular physical

law or phenomenon. KIEF collects these equations

and generates a set of equations to be solved by the

design modeling system.
(2)
 Store and manage the results (i.e. output from a design

modeling system)

(a) Use knowledge in a design modeling system.

The design modeling system generates (computes)

new information about a design object by using its

embedded knowledge. Computational results are

exported to the pluggable metamodel mechanism.

In order to maintain relationships between the input

information and the computed output information,

the pluggable metamodel mechanism creates

dependency relationships between the input con-

cepts and computed concepts.
By using these dependency relationships, the pluggable

metamodel mechanism maintains consistency of the

metamodel; e.g. when information in the metamodel is

modified, the pluggable metamodel mechanism detects the

information that has to be recomputed.

Fig. 4 shows an example of a modeling process with

the pluggable metamodel mechanism. Nodes and links

used in Fig. 3 (e.g. rectangular nodes and non-directed

links) have the same meaning. Dotted oval nodes
represent attributes and directed gray links between

attributes are derivation relationship links.

First, the concepts described in the related concepts are

selected as candidates to build an aspect model. For a beam

model case, all entities, all relations, and ‘GravityForce7’

are selected as candidates. After that, the designer builds an

aspect model by using the concepts described in the

available concepts; i.e. the designer should choose related

concepts in the metamodel to be included in the beam

model and relate each chosen concept to an available

concept. For example, in order to analyze deformation of

the shaft, ‘Shaft2’ is mapped to ‘Beam’ concept. We use

tentative concept category ‘Shaft&Beam’ that is a concrete

concept of ‘Shaft’ and ‘Beam’ for representing this

mapping.

Second, the pluggable metamodel mechanism collects

information to build a design object model for the beam

analysis system. In this case, ‘Solid8’ is used for calculating

the information of ‘Beam.’ Therefore, the pluggable

metamodel mechanism creates a dependency relationship

between ‘Solid8’ and ‘ShearingForceDiagram9’ that is

calculated by the beam analysis system.

Based on this modeling process, we can use each design

modeling system as a compartmentalized knowledge base

system and maintain the consistency based on derivation

relationships by using the pluggable metamodel

mechanism.
3.4.3. Exchanging data among design modeling systems

To define a data exchange method for design modeling

system requires to define a standard method to access data in

design modeling systems. Since there can be different kinds

of representation methods (data structure) for each attribute

(e.g. solid, face, force, etc.), KIEF should be able to handle

the differences in representation.

To absorb different data structures, we should define a

standard data structure for each attribute. However, some

attributes, which have a complex data structure, are difficult

to have these standard definitions (e.g. solid and free form

surface). Therefore, we define the standard in two ways.
†
 Standard access methods to obtain data

For some attributes that have complex data structure,

instead of defining the data structure itself, we define

standard access methods to extract related attributes (e.g.

obtaining attribute information of a vertex from the

information of a solid). This task can be made easier if

we use a product data model such as STEP.
†
 Standard data structure

For other attributes that have simple data structures, such

as vertex, we define standard data structures.

By using these standard access methods, the pluggable

metamodel mechanism can obtain and exchange data

between plugged-in design modeling systems.



Fig. 4. Example of modeling process by using the pluggable metamodel mechanism.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 103
3.4.4. Model construction support with a model library

When a domain theory is well organized enough, we can

support modeling processes more flexibly by defining

a model fragment that can serve as a building block to

build a design object model for the concerned design

modeling system. Model library stores model fragments for

different design modeling systems. These model fragments

correspond to concepts defined in the concept base. Model

library directly corresponds to ‘Knowledge in modeling

systems’ in Fig. 1.

When the user tries to build a model in a design modeling

system that has model library, the pluggable metamodel

mechanism collects corresponding model fragments from

the model library and assembles these fragments into a

model for the system.

Below, we describe some examples of the model library.
†
 Numerical equation model library

We can define a symbolic equation for each physical law.
For instance, to simulate behavior of a design object, the

pluggable metamodel mechanism collects related physi-

cal laws by using physical phenomenon information in

the metamodel. Then, the system collects attributes and

builds equations by using these numerical equation

model fragments.

However, when there are many physical phenomena to

take into account, a large number of equations are

collected. In such a case, it is difficult to solve all

collected numerical equations and a user may need to

simplify the model to obtain approximate results. In

order to support such modeling operations, more

information and knowledge would be necessary to

generate an appropriate engineering model for particular

situation [7].
†
 Qualitative process theory model library

We also define qualitative parameter relationships

between attributes of physical phenomena and physical



Table 2

Knowledge in the concept base

Physical concepts Number

Entities 800

Relations 150

Physical phenomena 500

Attributes 600

Physical laws 300

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113104
laws. To simulate behavior of a design object qualitat-

ively, the pluggable metamodel mechanism collects

related physical phenomena and physical laws from the

metamodel. Then, the system generates a qualitative

parameter network model. Behavior simulation is

conducted by a qualitative physics reasoning system

[12] based on QPT [15].
4. Applications based on physical concept ontology

Based on the discussion in previous section, we collected

concepts in the concept base and Table 2 shows numbers of

concepts already stored in a concept base. We employ two

approaches to construct this knowledge base.

Library based approach: We collect concepts based on a

textbook; e.g. we use [16] for physical law definition.

Example based approach: We also collect concepts base

on the analysis on particular design examples.

These numbers of concepts are not enough to handle

wide varieties of engineering problems at this moment.

However, we think this knowledge is enough to evaluate

KIEF through example design problems.

In this section, we illustrate applications of KIEF to

demonstrate the power of the proposed ontology. We first

review the Qualitative Process based Abduction System

(QPAS)1 [20,21], which generates design solution candi-

dates from state transition information. We discuss that the

proposed layered structure ontological knowledge is indeed

useful to develop such a system. Then, we describe an

implementation of a design support system on KIEF.
4.1. Qualitative process based abduction system

A Qualitative Process based Abduction System (QPAS)

is a reasoning system to propose candidate design solutions

from a series of qualitative state transitions [21]. QPAS

originally used the knowledge base of a metamodel system

[12] based on Qualitative Process Theory (QPT) [15]. QPT

is a process centered qualitative reasoning theory and is

more universal than confluence based qualitative reasoning

theories [22]. As we discussed in 3.3, this system had
1 In design research community, many researchers regard a candidate

solution generation process as abduction (hypothetical reasoning) [17–19].
a flexibility problem in knowledge representation. There-

fore, we modified QPAS to fit the concept base. Since QPAS

uses QPT Model Library, we first briefly review this library.
4.1.1. Qualitative process theory model library

The QPT model library has model fragments that are

defined below. Each model fragment in QPT corresponds to

a physical law or physical phenomenon. This fragment has

the following three slots.
Name: Name represents a corresponding physical

phenomenon or physical law.
Attributes: Attributes that are used to represent state

transitions. Since QPT only deals with attributes that may

change during simulation, a subset of attributes is

selected from the definition of a corresponding physical

law or physical phenomenon.
Expression: “Expression” represents parameter relation-

ships between two attributes with the following two

qualitative relationships.

† “Quantity relation”(QC, QK) represents a pro-

portional relationship between two attributes. QC
means that, if either of the parameters increases, the

other parameter will also increase. QK means that, if

either of the parameters increases, the other parameter

will decrease.

† “Influence relation”(IC, IK) represents a qualitative

differential relationship. The first parameter is the

target and the second parameter is the condition that

decides whether the target parameter will increase or

decrease. IC means that the target parameter

increases if the second parameter is positive and

that target one decreases if the second one is negative.

IK is vice versa.
Below is an example of a QPT model library that

corresponds to a physical law described in Section 3.2.5.
Name:
 SecondLawOfNewtonsLaw
Attributes:
 f_Force, a_Acceleration
Expression:
 f QCa
4.1.2. Algorithm of QPAS

QPAS uses the QPT library, attribute and physical

phenomenon of the concept base and the physical feature

library to generate candidate design solutions from a given

state transition We here illustrate the algorithm of QPAS

through an example of designing shaft rotation mechanism

(Fig. 5).

First, the designer inputs a state transition table as an

initial requirement. We use one or more entities that play an

important role to define its behavior and their parameters to

define this state transition. We call these parameters

‘functional parameters’. In QPT, a parameter is defined

with qualitative values which consist of ‘landmarks’



Fig. 5. Example of QPAS reasoning process.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 105
and ‘interspaces’. A ‘landmarks’ represents characteristic

value of given parameters. For example, let us think about

temperature of water, ‘boiling point’ and ‘melting point’ are

landmark of temperature, and temperature below ‘melting

point’, temperature between ‘melting point’ and ‘boiling

point’, and temperature over ‘boiling point’ are interspaces

of it.

In this example, we use entity ‘Shaft’ and parameter

‘AngularVelocity’ is selected as its functional parameter.

The first state “Shaft AngularVelocityZ@zero” (“@zero”

represents angular velocity(u) is at a landmark uZ0) and

the second state “Shaft AngularVelocityZwplus”(̂wplus¤

” represents angular velocity (u) is in an interspace u>0).

The top left part of Fig. 5 shows an example of state

transition.

From this transition table, QPAS finds out candidate

physical phenomena that may affect the functional par-

ameters to achieve the designated state transition from the

QPT model library. In addition, attributes that have a time

differential relationship of function parameters are also

candidate functional parameters to find physical phenom-

ena. We use the concept base to search candidate functional

parameters. In this example, since ‘AngularAcceleration’

has time differential of ‘AngularVelocity,’ ‘AngularAcce-

AngularAcceleration’ is selected as a candidate functional

parameter and physical law ‘Second law of Newton’s law’ is

selected to construct a candidate solution (top right part of

Fig. 5).

After finding out a candidate physical phenomenon

and/or physical law, QPAS searches a possible candidate
design structure by selecting physical features that include

the candidate physical phenomenon and/or physical law as

intended physical phenomena. Then, the designer selects

one physical feature from the candidates, and the system

constructs a solution candidate model by merging the

selected physical feature with entity information used in the

state transition table. In this example, since physical feature

‘motor’ has physical phenomenon ‘Rotation’ that associates

with ‘Second law of Newton’s law’ (middle part of Fig. 5),

“electrical motor” is selected as the candidate physical

feature. In this merging process, an entity that is used to

define a functional parameter is merged with an entity that

the selected physical phenomenon affects. In this example,

‘Shaft2’ are merged with entity ‘Shaft’ that is used to define

the functional parameter.

Since some physical phenomena require state changes of

other attributes to achieve the desired state transition, the state

transition table is updated by using attribute relationships. In

this example, ‘Torque’ of shaft should be ‘wplus’ to achieve

the desired state transition and this attribute becomes a

functional parameter. This physical feature selection process

reiterates until all functional parameters have appropriate

effects to achieve state transitions. In each selection process, a

selected physical feature is merged into the solution candidate

model. In this example, since physical feature ‘motor’ has

physical phenomenon ‘TorqueGeneration’ to achieve the

state transition of ‘Torque,’ no other physical feature is

selected for this process.

Finally, QPAS checks whether all physical features fulfill

the condition to invoke intended physical phenomena.



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113106
When there is one or more physical feature(s) that do not

fulfill their condition, QPAS also searches physical features

that will fulfill their conditions and merge them into the

solution candidate model (bottom part of Fig. 5).

4.1.3. Discussion

In the improved QPAS that uses physical features instead

of physical phenomena, we integrate knowledge defined in

different knowledge structure layers (i.e. QPT model library,

attribute definitions in the concept base, and physical

features) for solving a design problem. This means that the

knowledge level integration actually is done at these three

different layers; i.e. the concept base and physical features in

the basic ontology layer, the knowledge about a modeling

system in the modeling knowledge layer, and the model

library and knowledge embedded in design modeling

systems in the knowledge in modeling systems layer.

In contrast, the previous QPAS used these types of

knowledge defined in one format. Since we have a less

number of attribute concepts and physical phenomena and

laws compared with the number of mechanism libraries, the

former two types of knowledge have more reusability than the

latter. In this layered knowledge structure, the new QPAS is

better than the previous one in termsofknowledge reusability.

4.2. A Design support system based on KIEF

4.2.1. Architecture

To demonstrate the usage of proposed physical concept

ontology, we implemented a design support system based on

KIEF. KIEF and the design support system were

implemented in VisualWorks2 \Smalltalk

Fig. 6 shows the architecture of KIEF. The concept base

provides ontological knowledge to represent a metamodel.

The pluggable metamodel mechanism integrates design

modeling systems by using the knowledge about modeling

systems described in Section 3.4. The interface of a

modeling system is used for exchanging data from a design

modeling system to the pluggable metamodel mechanism.

The current implementation of KIEF is connected to

seven external design modeling systems; i.e. a qualitative

physics reasoning system [12], ProEngineer3 (a solid

modeler and its FEM preprocessor), a 2D draw modeling

system, an FBS modeler, QPAS, a catalog-retrieving

system, and Mathematica4–based engineering analysis

systems (such as a surface tension analyzer described in

the example below).

4.2.2. Design process on KIEF

The design process on KIEF is explained as follows First,

the designer selects physical features and combines them to
2 VisualWorks is a registered trademark of Cincom Systems.
3 ProEngineer is a trademark of Parametric Technology Corporation.
4 Mathematica is a trademark of Wolfram Research Inc. and is a symbolic

processing mathematics system.
build an initial metamodel. We can use an FBS (Function-

Behavior-State) modeler [13] and QPAS to support this

process. In this implementation of KIEF, we do not deal

with aggregation relationships between entities (e.g. a

‘Gear’ is a part of a ‘GearBox’). Second, KIEF reasons

out physical phenomena that can possibly happen to this

design object, including both explicitly intended ones

described in the initial metamodel and unintended ones

not assumed in the metamodel. This is done based on the

knowledge about physical features that represent causal

relationships between the conditions of the design object

and physical phenomena. Finally, the designer analyzes the

design object by evaluating it with different design

modeling systems. KIEF assists the modeling process for

these modeling systems and maintains the consistency

among different design object models.

Fig. 7 shows operations of this design process. In this

figure, ‘Input’ and ‘Output’ represent the input and output of

each step. ‘Support’ shows which knowledge and reasoning

facilities are used in each step. ‘Operation’ is a list of

operations that should be done by the designer.

4.2.3. Example

Let us illustrate an example of design performed on

KIEF. The example, the development of a laser stereo-

lithography method with an improved surface accuracy, is

based on a real design case conducted at a research

laboratory of the University of Tokyo. They tried several

approaches to improving the surface accuracy of laser

stereo-lithography. They could succeed to improve its

surface accuracy to G1.5 mm. The final design solution is

described in [23].

4.2.3.1 Construction of an initial metamodel. The

designer creates an initial metamodel with the FBS modeler

by decomposing functional specifications into detailed

subfunctions and by selecting corresponding physical

features to the decomposed subfunctions. Physical features

can also be suggested by QPAS. Fig. 8 depicts the initial

metamodel in this way.

4.2.3.2 Detection of unintended physical phenomena.

The upper part of Fig. 8 shows the functional structure, and

the lower part represents the structure of the design object

and physical phenomena occurring to it. The gray-colored

physical phenomenon nodes ‘Turbulence’, ‘Pressure-

PressureChange’ and ‘TemperatureChange’ are detected

as unintended physical phenomena by KIEF. The designer

may find these unintended phenomena disturbing to achieve

desired behavior. For example, ‘Turbulence’ may affect the

shape of the hollow and becomes noise for the level of

‘Resin’ that is a liquid to solidify to form a

‘ProductOfRapidPrototyping.’

4.2.3.3 Synthesis and analysis based on design

modeling systems. KIEF can help the designer choose an

appropriate design modeling system to analyze the design

object. For instance, the designer wanted to analyze a

phenomenon ‘SurfaceTension.’ According to knowledge



Fig. 6. Knowledge intensive engineering framework.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 107
about modeling systems, KIEF suggested that a surface

tension analyzer could handle ‘SurfaceTension.’ The

model in Fig. 9 shows the aspect model that only uses

concepts described in available concepts of the surface
Fig. 7. Design Proc
tension analyzer. The pluggable metamodel mechanism

uses this aspect model to collect attribute information that

is necessary to construct a model for the surface tension

analyzer. KIEF selects a solid modeler to obtain shape
ess in KIEF.



Fig. 8. Result of the FBS modeller.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113108
information. Fig. 10 shows the result of surface tension

analysis. Based on this analysis, the designer modifies the

‘Radius’ of the ‘Nozzle’. Since ‘Radius’ is originally

derived from the ‘Solid’ information in the solid modeler,
Fig. 9. An aspect model for s
the pluggable metamodel mechanism finds out that it is

necessary to modify ‘Solid’ information of ‘Nozzle’ for

consistency maintenance. Based on this information,

‘Solid’ information is modified in the solid modeler
urface tension analysis.



Fig. 10. Results of the surface tension analyzer.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 109
(Fig. 11). This example shows that concept dependency

network represented in a metamodel is useful to maintain

consistency related to the design object.

We can add a new design modeling system to KIEF and

integrate it with other design modeling systems by increasing

knowledge about modeling systems. For example, knowledge

about the catalog retrieval system (Fig. 12) is described as a

reasoning system that can compute detailed attribute infor-

mation (shape, material, and so on) from an entity concept.
Fig. 11. Modification of “solid” informatio
The pluggable metamodel mechanism can easily attach

this system to KIEF and supports the designer to use it

appropriately in an integrated manner.

4.3. Discussion

Through this example, we demonstrated the advantages

of having ontological knowledge structure, which are listed

below.
n based on surface tension analysis.



Fig. 12. Results of the catalog retrieval system.

M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113110
(1)
 Multiple ontology: Based on the layered engineering

knowledge structure, we can flexibly and appropri-

ately define different types of knowledge in an

integrated manner. For example, physical feature

knowledge represents general causality knowledge,

and design modeling systems embeds domain specific

knowledge.
(2)
 Multiple model management: Through the pluggable

metamodel mechanism based on multiple ontology, we

can integrate different design object models only by

defining relationships between the basic ontology and

each modeling system. Therefore, we do not need to

describe one to one correspondence between these

modeling systems.
(3)
 Conceptual knowledge level integration: KIEF uses a

metamodel that represents the relationships among

concepts used in different design modeling systems, to

integrate these design modeling systems at conceptual

knowledge level. The conceptual knowledge level

integration facilitates, for example, flexible use of

design modeling systems connected to the pluggable

metamodel mechanism through qualitative physics

based reasoning about physical features physical

phenomena. This facilitates flexible data level
integration. KIEF can also maintain the consistency

among various design object models.
Construction of the concept base is not an easy task,

though. The quality of knowledge in KIEF depends on how

much we spend to collect it. Without preparation of good

quality knowledge for a particular design problem, the user

of KIEF may face the following problems.
(1)
 KIEF fails to find out unintended physical phenomena

when there is no physical feature to check them.
(2)
 Since KIEF only uses qualitative information (topolo-

gical structure) to check occurrence of physical

phenomena, it may generate many minor or even

unfeasible phenomena that can be neglected according

to task specific knowledge. For example, physical

phenomenon ‘HeatGeneration’ occurs on all ‘Elector-

ElectoricalWire’ with physical phenomenon ‘Electri-

ElectricalFlow,’ and physical phenomenon

‘HeatTransfer’ also occur with other entities that

connect with ‘ElectoricalWire’. In such cases, it

becomes difficult to filter out unintended physical

phenomena that seriously affect the desired behavior.

This could be solved by introducing other types of

knowledge. For example, we need knowledge about



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 111
task domains; e.g. a list of attributes that are required to

be focused on.
(3)
 KIEF does not support mapping between different

design modeling systems automatically (yet), but this

can be solved by implementing knowledge and inter-

faces for the design modeling systems.
5 http://www.20-sim.com
5. Related works

Several attempts have been previously made to represent

a physical system with a single ontology. Chandrasekaran et

al., [24] proposed a device-oriented ontology to represent

the function and behavior of a device. Sasajima et al. [25]

proposed Function and Behavior Representation Language

(FBRL), which is another device ontology for plant

diagnosis. These ontologies are good for representing

knowledge in particular domains, but they are not enough

to represent all types of engineering knowledge.

PACT [26] and Collaborative Device Modeling Environ-

ment (CDME) [27] proposed another framework for

integrating existing external modeling systems by using

Knowledge Interchange Format (KIF) [28], Ontolingua [29]

and Compositional Modeling Language (CML) [30]. They

aim to integrate models through translating their knowledge

into single format.

Our ontology, in contrast, employs multiple ontology

approaches for representing different domain theories

represented in different design modeling systems. Since

each domain theory is represented in a suitable ontology,

KIEF has better expressiveness of knowledge. However, for

instance, computational results from each design modeling

system can only be compared and integrated within a

common ontology that is similar to the one used in a single

ontology approach. A single ontology just to represent

design objects with a unified vocabulary is insufficient,

though, because this common ontology additionally needs

to allow us to reason out and maintain the relationship

among different domain theories, including such operations

as reasoning out unintended physical phenomena, consist-

ency management, and selection of appropriate design

modeling systems. These reasoning capabilities are necess-

ary to combine different domain theories flexibly.

Also, PHYSSYS ontology [31] is a formal ontology

based upon system dynamics theory and it also aims to

construct engineering ontology for integrating reusable

engineering model components. They propose to relate

different domain theories using an ‘ontology projection’.

The ‘ontology projection’ approach is similar to ours that

collects a model library based on the physical concept

ontology. It works well for a well-structured domain area.

However, as we discussed in Section 3.4, it is very difficult

to represent all engineering knowledge to concepts in such a

formal ontology based on system dynamics theory. In

addition, they only discuss translation of a general ontology
model to a detailed ontology model and they do not discuss

consistency management among models from different

domains.

There are several research efforts to implement an

integrated design environment. An example of single

ontology based systems can be found in [32], which is

based on Bond-graph and later resulted in an integrated

systems development environment called 20-sim5. The

system is well functioning, as long as Bond-graph is a good

fundamental theory for the design domain. Designer’s

workbench [33] and DIICAD-Entwurf [34] are another

examples of this type of researches. They try to integrate

design models from functional model to its structure. These

systems can describe relationship between functional

description and geometrical elements, but they do not

have explicit physical concept ontology or offer knowledge

level integration.
6. Conclusions

In this paper, we proposed a physical concept ontology to

integrate various types of engineering knowledge. First, our

approach allows multiple ontology with layered ontology

structure. At the core of these multiple ontology, there is a

common ontology based on physical concepts that facili-

tates conceptual knowledge level integration and provides

vocabulary of engineering knowledge. The knowledge

covered are knowledge on design objects themselves,

physical phenomena and physical laws, concepts that can

be dealt with by various design modeling systems, and

knowledge about how to use these systems.

With this ontological representation, we can represent

and define a design object as a metamodel. Combined with

knowledge about design modeling systems, we can generate

an aspect model at physical concept level from the

metamodel and further convert it into a model for an

individual design modeling system through the pluggable

metamodel mechanism. Data is transferred from one design

modeling system to another via conceptual knowledge level

conversion. This means that the pluggable metamodel

mechanism achieves multiple model management and

conceptual knowledge level integration as well as data

level integration. We can represent knowledge seamlessly

from abstract and common level to domainand modeling

system-specific level. Ontology facilitates clearer represen-

tations and modeling of knowledge.

However, the cost of collecting knowledge could still be

too expensive in comparison with benefits obtained from

such sophisticated integration. Therefore on one hand, it is

important to generate the maximum added value from

accumulated knowledge. In our approach, knowledge is

used not only for representation but also for reasoning at

http://www.20-sim.com


M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113112
conceptual level. On the other hand, knowledge accumu-

lation efforts should be made easier with computational

supports. We have already proposed the concept of

knowledge acquisition by design [7] and developed a

system for automatic design documentation and knowledge

acquisition [35].

This paper also illustrated Knowledge Intensive Engin-

eering Framework (KIEF) that uses the proposed physical

concept ontology and embeds the concept base and the

pluggable metamodel mechanisms with a number of design

modeling systems. We also demonstrated the power of our

approach by illustrating an example design on KIEF.
Acknowledgements

We would like to thank the staff and students of our

research group, especially Mr. Masaki Ishii for his

contribution to the physical concept ontology design and

QPAS development. The example used in Section 4.2 was a

result of the ‘Modeling of Synthesis’ project supported by

the Japan Society for Promotion of Sciences (RFTF

9600701) conducted at the University of Tokyo, Osaka

University, Nara Institute of Science and Technology, and

National Institute of Informatics, Japan, between 1996 and

2000. In particular, we would like to thank Prof Tamotsu

Murakami, Dr Takayuki Sekiya, Dr Akira Tsumaya and Dr

Souichi Wakuri for their help.
Appendix A. Definitions of concepts in the concept base

Reserved words and letters are shown by double

quotations. Examples of these concepts are illustrated in

Section 3.2.

Entity
Name: !entityNamePredicateO(?e)

!entityNamePredicateOTZa symbol which is

unique in the category
Supers: !superEntityPredicateO(?e) !superEnti-

tyO(?e).
!superEntityOTZa symbol define in the other

frame of Entity
Relation
Name: !relationNamePredicateO(?r)

!relationNamePredicateOTZa symbol which is

unique in the category
Supers: !superRelationPredicateO(?r)

!superRelationPredicateO(?r).
!superRelationPredicateOTZa symbol define in

the other frame of Relation
HasRelations: !relationO, !relationO.
!relationOTZHasRelation(?r, !localEntityNa-

meO!localEntityNameO.)
Attribute
Name: !attributeNamePredicateO(?a)

!attributeNamePredicateOTZa symbol which is

unique in the category
Supers: !superAttributePredicateO(?a),

!superAttributePredicateO(?a).
!superAttributePredicateOTZa symbol define in

the other frame of Attribute.
Statements: DifferentialOf (?a, #!attributeNameDif-

ferentialOfPredicateO,

attributeNameDifferentialByPredicate).,

DimensionOf(?a, #(#L #M #T #I #Temp),

#(!integerO!integerO!integerO!inte-

gerO!integerO))
Physical phenomenon
Name: !phenomenonNamePredicateO(?p)

!phenomenonNamePredicateO:Za symbol which

is unique in the category
Supers: !superPhenomenonPredicateO(?p),

!superPhenomenonPredicateO(?r).
!superPhenomenonPredicateOTZa symbol

define in the other frame of PhysicalPhenomenon.
Attributes: !attributePredicateO(!attributeTerm1-

O), !attributePredicateO(!attributeTerm2O).
!attributePredicateOTZa symbol define in the

frame of Attribute. !attributeTermiOTZa symbol

which is unique in this frame.
Entities: !entityPredicateO(!entityTerm1O),

!entityPredicateO(!entityTerm2O).
!entityPredicateOTZa symbol define in the frame

of Entity. !entityTermiOTZa symbol which is

unique in this frame.
PhysicalLaws: !physicalRulePredicateiO
(!attributeTermiO.) !physicalRulePredicateO
(!attributeTermjO.).

!physicalRulePredicateOTZa symbol define in the

frame of PhysicalLaw.
Statements: OccurTo (?p, !entityTerm1O).,

HasAttribute(!attributeTermiO, !entityTermjO
).

!attributeTermi,jOTZa symbol for attribute define

in this frame.
Physical law
Name: !lawNameO
!lawNameOTZa symbol which is unique in the

knowledge base (usually the first letter is in capitals)
Comments: comment about the knowledge.
Attributes: !attributeSetO !attributeSetO
.
!attributeSetOTZ!localAttributeNameO
!arrowO!AttributeNameO



M. Yoshioka et al. / Advanced Engineering Informatics 18 (2004) 95–113 113
!arrowOTZ“-”

!localAttributeNameOTZa symbol for an instance

of an attribute used locally in this frame.
Expression: Mathematical expression of the phenom-

enon.!localAttributeNameO is used for describe

expression.

References

[1] ANSI/US PRO/IPO 100. Initial graphics exchange specification IGES

5.3; 1996.

[2] Kimura F. Product and process modelling as a kernel for virtual

manufacturing environment. Annals CIRP 1993;42(1):147–50.

[3] ISO TC184/SC4, ISO 10303-1. Industrial automation systems and

integration—product data representation and exchange. Part1: over-

view and fundamental principles; 1994.

[4] IBM corporation, CATIA solutions homepage. http://www-3.ibm.

com/solutions/engineering/escatia.nsf/Public/catiaoverview.

[5] Parametric technology corporation, Pro/engineer solution. http://

www.ptc.com/products/proe/index.htm.

[6] Tomiyama T. From general design theory to knowledge-intensive

engineering. Artif Intell Eng Des, Anal Manufact (AIEDAM) 1994;

8(4):319–33.

[7] Sekiya T, Tsumaya A, Tomiyama T. In: Finger S, Tomiyama T,

Mäntylä M, editors. Classification of knowledge for generating

engineering models. Knowledge Intens Comput Aided Des.

Dordretch: Kluwer; 1999. p. 73–90.

[8] Nomaguchi Y, Tomiyama T, Yoshioka M. Document-based design

process knowledge management for knowledge intensive engineering.

In: Cugini U, Wozny M, editors. Proceedings of the fourth IFIP

working group 5.2 workshop on knowledge intensive CAD, 2000. p.

163–85.

[9] Yoshioka M, Sekiya T, Tomiyama T. An integrated design object

modelling environment-pluggable metamodel mechanism-. Turkish

J Elect Eng Comput 2001;9(1):43–62.

[10] Tomiyama T, Kiriyama T, Takeda H, Xue D. Metamodel: a key to

intelligent CAD systems. Res Eng Des 1989;1(1):19–34.

[11] Ishii M, Sekiya T, Tomiyama T. A very large-scale knowledge base

for the knowledge intensive engineering framework, in: KB & KS’95,

The second international conference on building and sharing of very

large-scale knowledge bases; 1995, p. 123–31.

[12] Kiriyama T, Tomiyama T, Yoshikawa H. The use of qualitative

physics for integrated design object modeling. Design theory and

methodology (DTM’91). New York: The American Society of

Mechanical Engineers (ASME); 1991 [p. 53–60].

[13] Umeda Y, Ishii M, Yoshioka M, Tomiyama T. Supporting conceptual

design based on the function-behavior-state modeler. Artif Intell Eng

Des, Anal Manufact (AIEDAM) 1996;10(4):275–88.

[14] Shah JJ, Mäntylä M. Parametric and feature-based CAD/CAM. NY,

USA: Wiley; 1995.

[15] Forbus K. Qualitative process theory. Artif Intell 1984;24(3):85–168.

[16] Hix C, Alley R. Physical laws and effects. London: Wiley; 1958.

[17] Yoshikawa H, Gossard D (Eds.). Intelligent CAD, I, North-Holland,

Amsterdam; 1989.
[18] Coyne R. Logic models of design. London: Pitman Publishing; 1988.

[19] Takeda H, Veerkamp PJ, Tomiyama T, Yoshikawa H. Modeling

design processes. AI Mag 1990;11(4):37–48.

[20] Ishii M, Tomiyama T, Yoshikawa H. A synthetic reasoning method

for conceptual design. In: Wozny M, Olling G, editors. Towards world

class manufacturing, IFIP transactions B-17, North-Holland, Amster-

dam, 1994. p. 3–16.

[21] Ishii M, Tomiyama T. A synthetic reasoning method based on a

physical phenomenon knowledge base. In: Sharpe J, editor. Proceed-

ings of the 1995 Lancaster international workshop on engineering

design, 1996. p. 109–23.

[22] de Kleer J, Brown JS. A qualitative physics based on confluences.

Artif Intell 1984;24(1):7–83.

[23] Xie T, Murakami T, Nakajima N. Micro photoforming fabrication

using a liquid hollow shaped by pressure difference and surface

tension. Int J Jpn Soc Precision Eng 1999;33(3):253–8.

[24] Chandrasekaran B, Josephson JR. Function in device representation.

Eng Comput 2000;16:162–77.

[25] Sasajima M, Kitamura Y, Ikeda M, Mizoguchi R. A representation

language for behavior and function: Fbrl. J Expert Syst Appl 1996;

10(3/4):471–9.

[26] Cutkosky MR, Engelmore RS, Fikes RE, Genesereth MR, Gruber TR,

Mark WS, Tenenbaum JM, Weber JC. PACT: An experiment in

integrating concurrent engineering systems. IEEE Comput 1993;

26(1):28–37.

[27] Iwasaki Y, Farquhar A, Fikes R, Rice J. A web-based compositional

modelng system for sharing of physical knowledge. In: Fifteenth

international joint conference on aritficial intelligence, Nagoya,

Japan, 1997; p. 450–94.

[28] Genesereth M. . In: Allen J, Fikes R, Sandwall E, editors. Knowledge

interchange format. Proceedings of the conference of the principles of

knowledge representation and reasoning. Los Altos: Morgan Kauf-

mann Publishers; 1992. p. 599–600.

[29] Gruber TR. Ontolingua: a mechanism to support portable ontlogies.

Technical report KSL91-66, Knowledge Systems Laboratory, Stan-

ford University, Stanford; 1992.

[30] Falkenhainer B, Farquhar A, Bobrow D, Fikes R, Forbus K, Gruber T,

Iwasaki Y, Kuipers B. CML: A compositional modeling language,

Technical report KSL94-16, Knowledge Systems Laboratory, Stan-

ford University, Stanford; 1994.

[31] Borst P, Akkermans H. Engineering ontologies. Int J Human–Comput

Stud 1997;46(2/3):365–406.

[32] Broenink JF, Kleijn C. In: Roberts CTGN, editor. Computer-aided

design of mechatronic systems using 20-sim 3.0. WESIC 99, Second

workshop on European scientific and industrial collaboration, 1999. p.

27–34.

[33] Andreasen MM. The role of artefact theories in design. In: Universal

Design Theory, Shaker, Aachen, 1998; p. 57–70.

[34] Grabowski H, Lossack R. In: Finger S, Mäntylä M, Tomiyama T,

editors. Knowledge based design of complex products by the concept

of design working spaces. IFIP WG 5.2 workshop knowledge

intensive CAD-2 proceedings, 1996. p. 79–98.

[35] Nomaguchi Y, Tomiyama T, Yoshioka M. In: Cugini U, Wozny M,

editors. Document-based design process knowledge management

for knowledge intensive engineering. From knowledge intensive

CAD to knowledge intensive engineering. Dordrecht: Kluwer; 2001.

p. 131–44.

http://www-3.ibm.com/solutions/engineering/escatia.nsf/Public/catiaoverview
http://www-3.ibm.com/solutions/engineering/escatia.nsf/Public/catiaoverview
http://www.ptc.com/products/proe/index.htm
http://www.ptc.com/products/proe/index.htm

	Physical concept ontology for the knowledge intensive engineering framework
	Introduction
	Engineering knowledge
	Formalization of engineering activities
	Structure of engineering knowledge

	Layered knowledge structure for the knowledge intensive engineering framework (KIEF)
	Engineering activities supported by KIEF
	Physical concept ontology
	Building a metamodel
	Handling domain theories

	Applications based on physical concept ontology
	Qualitative process based abduction system
	A Design support system based on KIEF
	Discussion

	Related works
	Conclusions
	Acknowledgements
	Definitions of concepts in the concept base
	References


