Community as a New Communication Layer in the Internet

Hideaki Takeda National Institute of Informatics and The Graduate University for Advanced Studies

> 2-1-2 Hitotsubashi, Chiyoda-ku 101-8430 Tokyo, Japan E-mail takeda@nii.ac.jp

This work is done with Masaharu Hamasaki, Ohmukai Ikki, and Toru Takahashi. Hideaki Takeda / National Institute of Informatics

NII

8

The Information Flood on the Internet

- The information flood on the Internet
 - The amount of information on the Internet has been increasing
 - How to ensure the quality of information within the enormous amount of information
- The key to escape from the information flood is human relationship

Human relationship for the information flood

- People can act intelligent agents for each other to collect, filter and associate necessary information.
- They can help not only themselves but also other people
 - Four eyes see more than two.(三人寄れば文殊の知恵)
 - Scratch me and I'll scratch you (魚心あれば水心)
- But, it can work only via reliable human network

Hideaki Takeda / National Institute of Informatics 🛛 🔛 💻

Human relationship for the information flood

- Only reliable human network can help us to keep quality of information
 - Which do you believe recommendation of TV programs by your friends or TV guide books?
 - The degree of reliability
 - The degree of closeness
 - The degree of shared interests
 - •...
- Community or human network is the key to enable information sharing and exchange with quality

Roles of communities for information sharing/exchanging

- Communities or human network can serve as a layer of communication via computer network
- The distinction
 - Personal human network:
 - the graph where a person as a node and a relation between persons as a link
 - Community:
 - the structure upon personal human network

Hideaki Takeda / National Institute of Informatics 🛛 🚺 💻

Roles of communities for information sharing/exchanging

- Roles of communities
 - provide channels for information exchange on specific topics
 - Becoming a member of a community is obtaining a channel to send and receive information related on the community
 - E.g., Mailing list
 - work as filtering information
 - Members of communities collect and distribute information specific to some topics either explicitly or implicitly. Once a consensus can be formed in a community, information specific to the topics can be easily collected or selected by members of the community.
 - offer a field for collaboration to produce new information
 - Communication in communities can yield new information
 - E.g., discussion group on BBS

Tasks to realize "better" online communities

- Two directions
 - Make online communities natural like real-world communities
 - Online communities are still by far un-mature in comparison with real-world communities.
 - Exploit characteristics of online communities
 - Reduce real-world constraints
 - Time, Space, etc
 - Add new communication ways
 - Agents, asynchronous communication, etc
 - Both directions are needed

Balance is important

Hideaki Takeda / National Institute of Informatics 🛛 🕅 💻

Tasks

- Forming communities
 - How to know relationship among people?
 - Relating people to each other *Re-configuration of personal human network*

• How to form communities from relationship among people?

• Finding common needs, interests, topics, etc.

Finding relationship via WWW bookmarks

Collaborative Scheduling Support System for Conferences

- Facilitating activities in communities
 - How to make communities better?
 - Exploit merits of online communities and compensate their demerits *Expressive Media for Online Communities*

e-kyoshitsu: Application to Distance Learning for Children

- How to utilize information in communities?
 - Filtering, extraction, summarization, etc.
 - (...)

Red: Research Themes Blue: Applications to communities

Re-configuration of personal networks by the neighborhood matchmaker method

M. Hamasaki, H. Takeda

Purpose

- Personal network is usually "ad hoc"
 - We may miss better friends nearby
- We need better network
- One Solution:
 - Collect data for all people, then generate the "best" network
 - Disadvantage:
 - Scalability
 - Privacy
- Our approach:
 - Neighborhood Matchmaker Method (NMM)

Neighborhood Matchmaker Method (NMM)

- A iterative approach to optimize the network
- Every node works as a matchmaker for neighborhood nodes to improve the network
- The basic idea
 - In our real life, introducing new friends by the current friends is a practical way to optimize personal networks
 - We can know persons who you have not known before
 - Your friend can filter people for you
- Advantages
 - No need for central servers
 - Applicable to any size of community
 - Less computational cost

Hideaki Takeda / National Institute of Informatics 🛛 🖬

Algorithm

- 1. A node calculates connection values between its neighbor nodes
 - We call that node "matchmaker"
- 2. If the matchmaker finds a pair of nodes which has a good enough connection value, it selects this pair for recommendation. The matchmaker introduces both nodes of recommended pair to each other
- 3. The node that receives recommendation decides whether it accepts or not. If it accepts, it adds a path to the recommended node

Calculating connection values

Introducing each nodes

Adding a new path

Sample Networks

Results: Cover-Rate w.r.t. Nodes

- The path size is fixed as three times as the node size
- All cases were converged
- The average of cover-rate and the turn of convergence vary with the node size

Results: Average of Convergence Turn

- The number of convergence turn is linearly increased with the node size
- Computational cost
 - NMM: O(N)
 - Central Server Model: O(N²)

Conclusion

- Proposal of optimization of "ad hoc" network
- Good news for the Internet communities
 - No need for central servers
 - Applicable to any size of community
 - Anytime Algorithm

Discovery of Shared Topics Networks among People A Simple Approach to Find Community Knowledge from WWW Bookmarks

H. Takeda, M. Hamasaki, T. Matsuzuka, Y. Taniguchi

Purpose

- Generation of human network guiding individual information activities
 - An example
 - I want to watch sports programs on TV. What your recommendation?
 - Who and What
- Shared Topics Network among Users (STN)

Our approach

- Combination of manual and automatic methods
 - Identification of topic
 - Use of bookmark files as users' knowledge
 To overcome knowledge acquisition problem
 - Discovery of inter-topic relations
 - Text analysis to calculate inter-topic relations

Hideaki Takeda / National Institute of Informatics 🛛 🖬 🗖

Hideaki Takeda / National Institute of Informatics 🚻 💻

Procedure to discovery shared topics

Calculation of Similarity among WWW pages ↓ Estimation of Similarity among folders for different users

Hideaki Takeda / National Institute of Informatics 🛛 🚺 💻

Calculation of Similarity among WWW pages

Discovery of common topics

kMedia Interface

Bookmark with recommendation

Discovered Shared Topics Network

Discovery of topic relations

- Common relations
 - (search, IR), (academia, research-related)
 - similar but words themselves are different
- Un-common relations
 - ...(Unix, academia)
 - Speciality of the community

Discovery of relationship among people

- What are common topics with others?
- Who is good at this topic?

Experimental Evaluation (1) Subjects of Experiment

- 12 subjects
- 3 persons from 4 communities (lab. = community)
- Two tasks for subjects
 - Submit their bookmark files
 - Evaluate recommendations generated by STN
- Two types of groups to generate STN
 - In-community: Belongs to the same laboratory
 - Cross-community: Comes from different laboratories

Hideaki Takeda / National Institute of Informatics 🚻 💻

Experimental Evaluation (2) Items for User Evaluations

• The evaluation ranges from 1 to 5 (5 is the best)

Hideaki Takeda / National Institute of Informatics 🛛 🚻 💻

Analysis of Effects of Community (1)

the Relation Between Page and Folder Relevance

• High correlation between folder relevance and page relevance for in-community case

Category Resemblance (1) Categorization Is Human Relation?

• Human relation can be measured by resemblance of folder structure

Effects of Category Resemblance (2) Correlation Coefficient of the Parameters to Evaluations of Person

• The category resemblance is the highest of all parameters in this experiment

	To contact	To meet
Category Resemblance		
Num. of recommended pages	0.42	0.30
Ave. of page relevance	-0.13	-0.19
Num. of recommended folders	0.45	0.30
Ave. of folder relevance	0.38	0.30

۰ ÷

Avg. of Evaluation of page	0.29	0.40
Avg. of Evaluation 1 of folder	0.28	0.32
Avg. of Evaluation 2 of folder	0.09	0.20

Effects of Category Resemblance (4) for Page Recommendation

• Better page recommendation results for new group made from category resemblance (CR)

Summary

- Proposal of shared topic network to enhance user's communication
- Proposal of algorithm of discovery of shared topic networks with WWW bookmark files
- Validity of our approach by an experiment
- Proposal of category resemblance as measurement for community effects

Hideaki Takeda / National Institute of Informatics 🛛 🔛 💻

Collaborative Scheduling Support System for Conferences (on-going project)

H. Takeda, M. Hamasaki In cooperation with Yutaka Matsuo and Takuichi Nishimura

Purpose

- System Aim: Support people to find their friends in a specific group
- Research Theme: Investigate different human networks in the same group
- Three human networks
 - Human network in the activity: *I worked with him*
 - Human network by communication: *I know him*
 - Human network by behavior: *I meet him*
- Scheduling on conferences

System Functions

- Easy-to-use scheduling system for the conference
 - Just add presentations what you want to watch
- Can refer schedules of other people
 - Manually collaborative scheduling
 - Can only see schedules of *who know you*
- Can recommend schedules (not yet)
 - Automatically collaborative scheduling
- On-site support of schedules (not yet)
 - Small communication device with sensors

Cobit

Takuichi Nishimura, Hideo Itoh, Yoshinobu Yamamoto and Hideyuki Nakashima. ``A compact battery-less information terminal (CoBIT) for location-based support systems," In Proceeding of SPIE, number 48638-12 2002

The current status of the system

TelMeA Show Me What You Mean -Expressive Media for Online Communities

Toru Takahashi, Yasuhiro Katagiri, H. Takeda

Introduction of TelMeA2002

- What is TelMeA2002?
 - TelMeA2002 is an asynchronous community system like bulletin board system (not internet chat system).
 - TelMeA2002 employs character agents as personal conversational media among users.
 - We call such personal agents as *personified media*
 - In TelMeA2002 community, users can make messages in combination of full body expressions and pointing to web contents with personified media

Hideaki Takeda / National Institute of Informatics 🛛 🔛 💻

TelMeA2002

Conversation Process in TelMeA2002

Hideaki Takeda / National Institute of Informatics 🛛 🚺 💻

Our Goal

- Is to find pragmatic rules of social and nonverbal interactions
 - Supporting social and nonverbal interactions
 - Archiving the logs of long-term community activities
 - Analyzing usages and effects of nonverbal expressivity

- Calculate social evaluations for involved information
- Summarize or make reutilize the involved information

Challenges 1 - Identification

- Unique embodiment is necessary for quick identification.
 - Because users are represented by their personified media.
- For analysis, however, each personified medium needs to have same set of expressions.
- Making same animations for various personified media puts a heavy load on the development.

We first focus on an analysis of usage of various type of animation before expanding the grade of identification.
 (56 kinds of animations for all 8 types of personified media)

Hideaki Takeda / National Institute of Informatics 🛛 🖬 💻

Challenges 2 - Communication Features

- Personified media should cover all 4 features of human communication
 - *Facts* enable through the spoken content
 - *Relationship* expressed through the relative spatial distance and position
 - Appeal expressed through the selection of various performative verbs
 - Self-revelation communicated through the emotional expression

Challenges 3 - Expressive Repertoire

- Personified media need to cover the entire scale of expression for the believability.
 - 35 performative verbs (*explains*, *agrees*, *complains*, etc.)
 - 48 affective expressions (*likes, sadly, worries*, etc.)
 - 13 interpersonal attitudes (yes, I know, forgotten, etc.)
 - Direct attention
 - Pointing, interpersonal distances
- Some essential conversational expressions such as statice and nods are less of importance because of nature of asynchronous conversation.

Hideaki Takeda / National Institute of Informatics 🛛 🖬 💻

Í

Trial Use: e-教室(e-classroom) Project

- e-教室(e-classroom) Project:
 - Run by NPO
 - Distance learning for children (mainly junior-high school, 12-15yrs)
 - Several classrooms (math, economics, CG, etc)
- TelMeA for e-教室
 - Experimental use of TelMeA
 - Classroom for
 - Leaning "agent" as new technologies by using
 - Communicating to each other ("BBS" for participants)
 - (demo)

TelMeA for e-教室

Hideaki Takeda / National Institute of Informatics 🖬 💻

The current status of "TelMeA for e-教室"

- Period: c.a. 4 month (2003.1.16-)
- Login users: 64
- Posted users: 24
- Post No.: 297, Post thread No.: 22

Summary

- Information technologies, in particular AI can offer new opportunities for communities
 - Reducing constraints of the real world
 - Time, space, etc
 - new communication ways
 - Knowing new related people, communication via agents etc
- They will change meaning or roles of communities
 - e.g,
 - Very weak communities
 - Quick life cycle of communities
 - Belonging so many communities

Hideaki Takeda / National Institute of Informatics 🚻 💻

Summary

- Challenges
 - Support of life cycle of communities
 - Create, maintain, diverse, merge, disappear
 - Trust
 - Trust is very difficult
 - Trust may be more complicated than the real world...