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Abstract 

In this paper, we are concerned with the problem 
of how a physical robot can get an appropriate inter- 
nal representation to its task and environment. Learn- 
ing from experience is effective for the problem, but 
it is very time-consuming to learn a representation 
from the beginning in a real environment. On the 
other hand, the representation learned only in a simu- 
lated environment has the risk of not serving the pur- 
pose in a real environment because of the uncertainty 
in sensors, actuators, and the environment. In order to 
have the best of both worlds, it is effective to trans- 
plant the learned state representation of a virtual 
agent to a physical robot. For this purpose, we im- 
proved our developed incremental learning architec- 
ture for use in the real environment and developed a 
new architecture, called STNS-R. In this architecture, 
inappropriate negative instances caused by uncertain- 
ties are found on the basis of the distribution of in- 
stances and removed in order to correct the distorted 
shapes of the states. The effectiveness of STNS-R is 
shown in the experimental results. 
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1 Introduction 
Machine learning is a promising and necessary 

method to realize an autonomous agent because it 
does not need a priori knowledge. Since most of 
learning methods require many trials to learn the 
given environment, they are usually performed in a 
simulated environment. It means that they are not 
applicable to robots in a real world. We need a 
seamless learning method that is applicable either in 
a simulated or in a real environment, i.e., the same 
algorithm is applicable and acquired knowledge is 
valid in both environments. 
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A physical robot must face various situations and 
cope with a huge amount of information. Learning 
from experience is effective for such a robot in 
acquiring an appropriate state representation for the 
current task. It is, however, very time-consuming to 
learn a representation from the beginning in a real 
environment. On the other hand, the state representa- 
tion learned only in a simulated environment has the 
risk of not serving the purpose in a real environment 
because of the uncertainty in sensors, actuators, and 
the environment. In order to have the best of both 
worlds, it is effective to transplant the learned state 
representation of a virtual agent to a physical robot. 

Incremental learning methods are suitable for 
this type of learning task because they can adapt 
seamlessly to changes of the environment. In OUT 

previous work [ 1, 21, we proposed Situation Transi- 
tion Network System (SnVS), an architecture that 
performs categorical learning and behavioral learning 
incrementally in parallel with task execution. In cate- 
gorical learning, it makes a state representation and 
modifies it according to the results of behaviors. Sim- 
ulation results showed that it could learn efficiently 
and adapt to unexpected changes of the environment 
such as sensor trouble or actuator trouble. 

For a preparatory experiment, we tested our 
method with a physical robot that started to learn 
with a STNS learned enough in a simulated environ- 
ment. In the experiment, it could maintain the state 
representation and behaviors, but its performance got 
worse. Then, we improved STNS, and developed a 
new architecture by which a state representation 
learned in a simulated environment can be trans- 
planted seamlessly and adapted to a physical robot. 
This paper proposes the improved STNS for the real 
world, called SWS-R. 

The remainder of this paper is structured as fol- 
lows: In the next section, we review our previous 
work, including explanations for the research area we 
tackled. Next, we show the seamless learning method 
to learn an appropriate state representation either in a 
simulated or in a real environment, and finally, we 
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show the experimental results and give a discussion 
with concluding remarks. 

2 The Domain and Our Previous Work 

2.1 Categorical Learning in Reactive Agents 

Physical robots are usually designed with fixed 
categories for recognizing their environments. How- 
ever, human-designed categories are not always suit- 
able for them. Learning the categories from experi- 
ences is effective in adapting to the environment. 

We think that categories should be created on the 
criterion how well the robot can act. Several methods 
have been proposed which segment the state space 
enclosing input vectors from which the robot reaches 
the same reward by the same sequence of behaviors 
in the same state ~ (segmerztation-based-on-behaviors) 
[1.-6]. This policy is suitable for reactive agents that 
assign one feasible behavior to each state because in- 
put vectors at which the robot should take the same 
behavior put together into the same state by this poli- 
cy. Thus, this policy makes highly abstracted state 
representation specialized to the current task. 

There are four previous works on this policy ex- 
cept for ours. Asada et al. [ 3 ]  proposed a method that 
divides the state space by hyperellipsoids that en- 
close input vectors from which the robot achieves the 
goal or already acquired state by a variable sequence 
of one kind action primitive. Albus et al. [4] proposed 
a method that divides the state space using recur- 
sively a standard clustering algorithm. Yairi et al. [ 5 ]  
proposed a method that segments the state space 
using Bayesian classifier. Ishiguro et al. [6] proposed 
a method that divides states by hyper-planes in which 
the robot receives different rewards (or delayed re- 
wards) when executing the same action. 

In OUT previous work [l, 21, we developed this 
type of categorical learning to a new architecture, 
STNS, which performs segmentation-based-on-be- 
haviors by incremental learning: the system extracts 
states and maintain them while executing the task on 
the basis of experiences of taskexecuting behaviors. 
This type of incremental learning contributes to au- 
tonomy, adaptability and efficiency of the learning 
system, and it is suitable for agents that continue task 
execution without breaking down against changes of 
the environment. In the next section, we explain th s  
architecture in outline. 

2.2 STNS 

As shown in Fig. 1, STNS consists of a situation 
classifier, a situation transition network (STN), and 
several behavior modules. In each behavior step, the 
system identifies the current situation (or state) where 
the xuirent input should be included, then makes a 

Fig. 1: The Structure of STNS 

plan on the STN, and at last activates a behavior 
module according to the plan. 

Categorical learning and behavioral learning are 
performed on the data that consists of the input, the 
corresponding situation, the selected behavior, and 
the received reward. This data puts into a history 
database. It keeps the data for a fixed period and 
deletes it after that. Therefore, STNS can adapt flexi- 
bly to the changes of environment and the internal 
representation without being misguided by outdated 
data. 

In categorical learning, the system constructs a 
state representation and maintains it by segmentation- 
based-on-behaviors policy. Reinforcement learning 
of a behavior policy is performed on this state repre- 
sentation: the system constructs ag MDP (Markov 
Decision Problem) model of the environment which 
consists of the transition probabilities between situa- 
tions and the expectations of immediate rewards ac- 
companying transitions by the maximum likelihood 
estimation. It decides an appropriate behavior by the 
p o k y  iteration algorithm [7] and planning on the 
model in order to maximize discounted sum of re- 
wards received over a period of time. In each behav- 
ior step, the system adjusts the shapes of situations in 
categorical learning and modifies the MDP model in 
behavioral learning reflecting the last data. If big 
modification is needed, the system extracts or elimi- 
nates situations in categorical learning and modifies 
the MDP model reflecting the new state representa- 
tion in behavioral learning on the data in the history 
database. In this way, these two learning processes 
are performed in parallel while executing the task. 

In the next section, we explain the state represen- 
tation used in STNS. For further details of the whole 
architecture, please see [ l ]  or [ 2 ] .  

2.3 State Representation in STNS 

STNS segments the state space into some situa- 
tions. In STNS, a situation is defined as a set of input 
vectors from which the system can meet with the spe- 
cific result by the specific behavior. The specific be- 
havior is called the condition behavior of the situa- 
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tion. The specific results are divided into two types, 
i.e., R-situation and T-situation. In a situation based 
on immediate rewards called R-Situation, the result is 
to receive a specific big reward (called the goal re- 
ward). In a situation based on situation transitions 
called T-Situation, the result is to transit to a specific 
situation (called the parent situation). If every chain 
of T-Situations is anchored to an R-Situation, every 
situation is guaranteed to lead to a goal reward by the 
same sequence of behaviors. 

In incremental learning, the system should be 
able to decide rough shapes of situations from a lim- 
ited amount of data, and to decide finer shapes as 
data increase. For this purpose, we contrived the 
bitten h-vper-ellipsoid representation. In this represen- 
tation, each situation is shaped by the positive in- 
stances and the negative instances that are decided 
based on the definition of the situation. As shown in 
Fig. 2, this representation is a mixture of macroscopic 
recognition and microscopic recognition. In macro- 
scopic recognition, the boundary of a situation is a 
contour of Mahalm-obis' distance from the population 
of the positive instances. This boundary forms a 
hyperellipsoid. This recognition is quick and rough 
that can be formed even from very few data. Micro- 

Recognilion on (he bitlen hyper-ellipsoid represenlalion 

Fig. 2: The Bitten Hyper-Ellipsoid Representation 

scopic recognition is realized by the Nearest Neigh- 
bor methods and grows finer as data increase. By 
mixing these two types of recognition, a fine and 
flexible recognition is realized. 

3 Preparatory Experiment 

3.1 Task and Environment 

The task for a mobile robot is to reach a goal 
area as shown in Fig. 3. Fig. 4 shows a picture of the 
physical robot with an omnidirectional vision sensor 
with a hyperboloidal mirror. It can find a goal target 
from everywhere in the plane and calculate its coor- 
dinates on the coordinate system fixed to the robot. 

3.2 Results 

First, we made a virtual agent with STNS and let 
it learn enough in a simulated envlronment corre- 
sponding to the real environment. Then, we trans- 
planted the well-learned STNS to a physical robot 
and let it continue learmng in the real environment. 
This procedure was planned 111 consideration of prac- 
tical use where learmng in a real environment is very 
t imeconsung  and should be transferred to a simu- 
lated environment as much as possible. Fig. 5a shows 
the state space of the transplanted STNS after 2000 
behavior steps learmng 111 the simulated environment. 
Learning converged thoroughly until then. Relearn- 
ing in the real environment was performed until 1000 
behavior steps. We repeated thls experiment five 

Fig. 4: Our Physical Robot 

times. Table 1 shows the average numbers of behav- 
iors that are needed to reach the goal. All numbers of 
behaviors to the goal was averaged in each experi- 

PemptoaI Jnput (2dimcmlanal): 
The real-valuzd (% y) coordmdes of Ute center of the god on lhe coardinafe sy61em fixed lo the robot 

The angm IS setllrd al the centeer of Ute robot, and the x-axis points lo the front of rhe robot 

/7 

k robot 

Fig. 3: The Navigation Problem 

ment. The average of these numbers is 2.53 and the 
standard deviation is 0.05. 

As a comparative experiment, the virtual agent 
continued learning until additional 1000 behavior 

373 



steps. We repeated this experiment ten times. The 

a. Before relearning 

b. After relearning 

c. Optimum state space 

condition behaviors 
C- forward move 
+ backward move counterclockwise rotation 
Fig. 5: State Spaces before and after Relearning and 
the Optimum State Space 

CJ clockwise rotation 

Table1 : Results of the Original STNS 

2.57 
5 2.57 

total average of the numbers of behaviors to the goal 
is 2.04. Compared with this number, the result of 
STNS is 23.4 % worse. 

Fig. 5b shows an example of state spaces after 
1000 behavior steps relearning in the real environ- 
ment. The small circle (the radius is 50cm) at the cen- 
ter of each space denotes states in which the rover ar- 
rives at the goal. The big circle (the radius is about 
283cm) surrounding each space denotes the longest 
distance between the rover and the goal. Compared 
with the state space before relearning (Fig. 5a) or the 
optimum state space (Fig. 5c), its shape is rather dis- 
torted. 

4 The Improved STNS for the Real 
World 

4.1 Problems with Our Previous Work 

The preparatory experiment showed that learning 
in the real environment was worse than in the simu- 
lated one in performance. We suspect that incorrect 
distortion of state shapes causes the low performance 
of STNS in the real environment. A s  shown in Fig. 6, 
causes of the low performance are connected with 
each other and form a vicious circle. Distortion of 
state shapes is related to all causal relationships de- 
noted by solid arrows in this figure. By reducing this 
distortion, the performance will be improved to a 
considerable extent. 

This incorrect distortion of state shapes is caused 
by experience in the real environment that has vari- 
ous types of uncertainty as shown by broken arrows 
in Fig. 6. In STNS, each state is represented by using 

Fig. 6: Vicious Circle Causative of Low Performance 
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positive instances and negative instances collected 
while executing the task as shown in Fig. 2. It works 
well in a simulated environment where every instance 
is represented exactly, but it may have problems in a 
real environment where instances have uncertainty in 
their representation. 

4.2 The Method 

The proposed method so-called STNS-R is an 
improved version of STNS to adapt to uncertainty in 
sensors, actuators, and the environment in the real 
world. In order to correct the distorted shapes of the 
states, STNS-R removes inappropriate negative in- 
stances caused by the uncertainty tiom the state rep- 
resentation. It judges appropriateness of instances 
from their distribution using the following heuristics: 
the more positive instances exist around a negative 
instance, the more suspicious the validity of the in- 
stance is. Removal of inappropriate positive instances 
is not performed because positive ones may be much 
more than negative ones and it is difficult to judge 
their appropriateness from fewer negative ones 
around them. Negative instances are apt to be short 
because collecting many negative instances is in con- 
flict with achieving high performance in task execu- 
tion. 

Fig. 7 shows how to discriminate between inap- 
propriate negative instances and appropriate ones in 
STNS-R. It calculates all visual angles between adja- 
cent positive instances in view of a negative instance. 
If the maximum angle is less than a threshold, the 
surrounded negative instance is judged inappropriate. 
The threshold is fixed empirically to 90 degrees in 
this task. We chose not the minimum distance be- 
tween a positive instance and a negative instance but 
the maximum visual angle between adjacent positive 
instances as an attribute for discrimination because 

0 

90 degrees "I -)( Over degrees 

0 

J 0- 

0 
0 

a. An inappropriate b. An appropriate 
negative instance negative instance 

0 a positive instance 
X a negative instance 

1 the maximum visualangle 

Fig. 7: An Inappropriate Negative Instance and an 
Appropriate One 

the former cannot discriminate in the neighborhood 
of boundaries of states. 

This discrimination process is performed when a 
new negative instance or a new positive one is added 
to a state. When a new negative one is added, the sys- 
tem checks it with all positive instances in the state. 
If it is judged inappropriate, it is removed kom the 
state. When a new positive one is added, the system 
checks all negative instances one at a time with all 
positive ones including the newest. All negative in- 
stances judged inappropriate are removed from the 
state. 

The advantage of the method is that it is based 
only on the distribution of instances and needs nei- 
ther a priori knowledge on uncertainty of sensors, ac- 
tuators, and the environment nor redundant sensory 
information. It is good at maintaining a state that has 
a convex shape. On the other hand, it cannot maintain 
a ring-shaped state or a state divided into several 
areas. Therefore, it is unsuitable for problems in 
which the optimum state representation has such 
states. In the problem to which it applied, the ideal 
loci, that is the loci without uncertainties, of the con- 
dition behaviors in the state space should fulfill both 
of the following two conditions: 

1. Loci are continuous. 
2. If two loci pass two sufficiently neighboring 

points, they are neighboring in their lower 
courses. 

These conditions are broken in many problems in 
which behavior modules make complicated behaviors. 
Fig. 8 shows three examples of such cases. In the 
simple problem tackled in this paper (shown in Fig. 
3), these conditions are fulfilled. 

The proposed method is limited to a problem 
with a two-dimensional state space. We are tackling 
the problem of extending the idea of discriminating 
with the maximum visual angle to a multidimensional 
state space. 

a. When the condition 1 is broken 

b. When the condition 2 i s  broken 

Fig. 8: Unsuitable Cases for Our Method 

375 



5 Experimental Results 

Experiment # 
1 
2 

-' 
In order to test the improved STNS, STNS-R, we 

conducted the same experiment as the original STNS: 
we transplanted a state representation learned enough 
in a simulated environment (Fig. 5a) to the physical 
robot and let it continue learning until 1000 behavior 
steps. We repeated this experiment five times. With 
STNS-R, it could adapt seamlessly to the real envi- 
ronment and maintain the state representation, behav- 
iors, and high performance all through the experi- 
ment. Table 2 shows the average numbers of behav- 
iors that are needed to reach the goal in the same 
form as Table 1. The average of these numbers is 
2.28 and the standard deviation is 0.02. Compared 
with the average of the virtual agent in an ideal envi- 
ronment without uncertainties, 2.04 as mentioned 
above, the deterioration of performance were limited 
to 1 1.8 %. This results means that STNS-R prevented 
47.9 % of unnecessary deterioration in performance 
as compared with the original STNS. 

Ave. # of Behaviors to the Goal 
2.25 
2.30 

Table2: Results of STNS-R 

- 
3 
4 
5 

2.28 
2.27 
2.30 

6 Conclusions 
We have proposed a new architecture, called 

STNS-R, by which a state representation learned in a 
simulated environment can be transplanted seam- 
lessly and adapted to a physical robot. In this archi- 
tecture, inappropriate negative instances caused by 
uncertainties in the real environment are found on the 
basis of the distribution of instances and removed in 
order to correct the distorted shapes of the states. The 
effectiveness of STNS-R was shown in the experi- 
mental results. The advantage of STNS-R is that we 
can switch the learning environment from a simulated 
one to a real one at anytime because of the incremen- 
tality of learning. Even if the transplanted state repre- 
sentation should not be mature, it would be adapted 
by learning in the real environment. 

STNS-R is the only learning method, as far as 
we know, which can transplant seamlessly a state 
representation learned in a simulated environment to 
a physical robot. Any other learning method needs a 
large number of data of random behaviors in a real 
environment in order to construct an appropriate state 

representation. Transplanting a state space from a vir- 
tual agent to a physical robot can accelerate learning 
very much. 

STNS-R is effective also in learning from the be- 
ginning in a real environment because it can select 
appropriate data among a corrupt set of data because 
of uncertainty in the real environment. 

As mentioned in Section 4.2, there is limitation 
in the problem area to which the proposed method for 
discriminating inappropriate instances can be applied. 
We are tackling the problem of improving the defini- 
tion of state in order to simplify state shapes, as well 
as extending the state representation to be more ex- 
pressive. 
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