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Abstract

In this paper, we propose a new architecture for rec-
ognizing objects based on a concept \embodiment" as
one of primitive functions for a cognitive robot. We
de�ne the term \embodiment" as the size and shape
of the agent's body, locomotive ability and its sensor.
According to embodiment, an object is represented by
reaching action paths, which correspond to a set of se-
quences of movements taken by the agent for reaching
the object. Such behavior is acquired by the trial-and-
error method based on the visual and tactile informa-
tion. Visual information is used to obtain sensorimo-
tor mapping which represents the relationship between
the change of object's appearance and the movement
of the agent. On the other hands, tactile information
is utilized to evaluate the change of physical condition
of the object caused by such movement. By means of
this method, the agent can recognize an object without
depending on its position and orientation in the envi-
ronment. To show the validity of our method, we show
an experimental result of computer simulation.

1 Introduction

Recognizing an object based on visual information
is essential and useful function for the agent which can
behave in the real world. In the computer vision area,
so-called model-based approach is popular for recog-
nizing an object based on the visual features. Since
human designers always prepare the model of the ob-
ject from the designer's viewpoint in such approach, it
is ambiguous whether such model is suitable or not for
the agent having the model-based object recognition
system. Therefore, such model should be constructed
by the agent itself from the agent's viewpoint.

Recently, there have been many researches regard-
ing to the development of the intelligent agent which
have an internal model considering agent's embodi-
ment [4][3][1]. Embodiment roughly means property
of agent's body such as size, shape, and locomotive
ability. In their researches, the model is expressed by
using features of agent's embodiment. Nehmzow et
al.[3] proposed a location recognition method in enclo-
sure environment by means of sequential motor com-
mand of turn action and elapsed time between com-
mands. Fukuda et al.[1] proposed an object recogni-
tion method by hand shape. They assume that an
internal representation of object in human brain is ex-
pressed as hand shape for grasping it.

In our work we use the assumption that an internal
representation is expressed by agent's embodiment. It
is almost the same assumptions to above researches.
Locomotive ability is commonly used to model the en-
vironment [4][3]. In addition to is, we argues that the
size and shape of an agent also plays very important
role in modeling it. It is because the representation of
its environment depends on the size and shape of the
agent's body. For example, a chair is an instrument
to sit for a human, but it does not have any meaning
of tool to sit for an ant which has di�erent embodi-
ment. In other words, the signi�cance of existence of
the object depends on the embodiment of the agent.

In this paper we propose an object recognition method
considering agent's shape, size, and locomotive abil-
ity. In our method, an object is represented by a set
of all possible action series to it. An action series is
a path that starts at current position and terminates
with touching state in which agent's body touches to
an object. We call such a path as \Reaching Action
Path". A reaching action path is acquired by the trial-
and-error method based on the visual and tactile in-
formation. Because of an object has it's own size and
shape, features of a set of paths vary depending on
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them.
Because reaching action paths as internal represen-

tation represents an object, recognizing an object by
vision is to estimate the reaching action paths from
visual input. In next section, we will show a method
of generating reaching action path from visual input.
In section 3, we will show a method of make a repre-
sentation of an object from reaching action paths. In
section 4, we show an experimental result of computer
simulation to show the validity of our method. By
means of our method, the agent can recognize an ob-
ject without depending on its position and orientation
in the environment.

2 Reaching Action Path

Objects are considered as an area in which an agent
can not exist. In other words, objects are represented
by paths each of which terminal is perceived by tactile
information. We call these paths as reaching action
paths. The agent can discriminate objects by means
of reaching action paths because they reect the shape
of objects. In order to represent an object by reaching
action paths, we extract several features from them.
We call these features as a shape characterizing vector.

On the other hand the agent cannot receive any
information directly about an environment by vision.
In order to recognize the physical world by vision, the
visual information should be concerned to tactile in-
formation, which is an only modality to receive physi-
cal information directly. If the agent knows the visual
features which associates with tactile information, it
can generate reaching action paths mentally. In our
method the relation is learned by means of dynamic
programming.

2.1 Assumed Agent and Environment

We assume that the dimension of an agent and an
environment is 2, that is, the agent can move only
on the 2D plane. Figure 1 shows the agent and the
environment assumed in our work. The shape of the
agent is circle and the agent is equipped with tactile
sensors around its body. We put a camera over the en-
vironment as its eye so that the agent can see both its
body, object and contact state. We also assume that
the agent can generate 6 action commands. We de�ne
an action unit as a segment of the agent's movement
until a change of state is observed. The agent also has
a gyro sensor so that it can perceive rotation of body.

2.2 Calculation of Reaching Action Path

A reaching action path means an optimal path,
which starts at a point on agent's body and ends at a
point on boundary of physical object.

Figure 1: Assumed agent and environment.

Figure 2: Contact condition.

Suppose a point pbl 2R
2 on the surface of an agent's

body and a point pok 2R
2 on the surface of a physical

object (Figure 2). When the agent's body is touching
the object, a tangential line of the agent's body coin-
cides with that of the object at a contact point. In
other words, the point on agent's body coincides with
that of the object, and a normal vector of the agent's
body and object have the same size and the oppo-
site direction. This relation is expressed as following
equation:

p
b
l = p

o
k (1)

n
b
l = �n

o
k (2)

where nbl 2R
2 is a normal vector on the agent's body

at the point pbl and n
o
k 2R

2 is a normal vector on the

object at the point pbk.
Next, we explain a method for learning the reach-

ing action path using visual input. Consider an input
image like Figure 3 which includes both the agent's
body and an object. We treat an input image as a
set of several small areas. The small area may include



Figure 3: An input image and small areas.

the surface of agent's body and/or the object. We
call an area that includes the point of agent's body
as Receptor Area (RA), and an area that includes the
point of object as Expected Touch Area (ETA). An
expected touch area indicates an area in which physi-
cal contact will be observed after certain action series,
i.e., reaching action. We de�ne the coordinates of ex-
pected touch area as (xETA; yETA) and an angle of
a normal vector as �ETA, the coordinates of receptor
area as (xRA; yRA) and, a normal vector as �RA. In
a goal state of reaching action path, the state of each
area should be as follows;

x
ETA = x

RA
; y

ETA = y
RA

; �
ETA

� �
RA = � (3)

We use dynamic programming as a learning method
for the optimal policy to generate an optimal reach-
ing path. Given an utility function U and if a state
transition holds Markov property, optimal policy for
Markov decision problem is calculated as follows;

f(i) = argmax
a

X

j

M
a
ijU(j) (4)

where Ma
ij is the probability of reaching state j if ac-

tion a is taken in state i, and argmaxa f(a) returns the
value of a with the highest value for f(a). The utility
of a state can be expressed in terms of the utility of
its successors:

U(i) = R(i) + max
a

X

j

M
a
ijU(j) (5)

where R(i) is a reward function which returns a value
of reward in state i. In our work, a reward is given
when the point of agent's body touches to an object,
and M

a
ij indicates the transition probability of recep-

tor area and it is obtained through experiences of ran-
dom action.

Although, as mentioned above, a reaching action
path is de�ned such a path between a receptor area
and an expected touch area, we can de�ne multiple
reaching action paths. If there are m expected touch
areas on boundary of the object and n receptor areas
on boundary of the agent's body,m�n reaching action
paths are de�ned.

Table 1: Example of Relation between action and

code.
action a1 a2 a3 a4 a5 a6

code -2 -1 0 1 2 0

Figure 4: Chain coding.

3 Characterizing Objects by Embodi-

ment

In order to represent objects by agent's embodi-
ment we use reaching action paths. Reaching action
paths are calculated depending on the variety of a size
and shape of agent's body. In this section we explain
methods to represent the physical properties of object
by means of reaching action paths. Physical properties
mean pose, i.e., position and orientation, and shape of
an object. Before explaining these methods precisely,
we explain a method to represent the reaching action
path.

3.1 Representation of a Reaching Action
Path

In order to represent a reaching action path, we uti-
lize a chain coding which is a popular coding technique
in the �elds of image processing and shape analysis [5].
In our method, a code indicates an angle of rotation
of a motor command. Table 1 shows an example of
relation between action and code. The ratio between
code values is similar to that of rotation angle. How-
ever, the moved distance and the angle of rotation cor-
responding to the action are indeterminate, since one
action terminates when change of state is observed. In
order to overcome this problem, we adopt an average
value of rotating angle to calculate the ratio. Figure
4 shows a summation of code value in each time step
corresponding to an action series of reaching action.
The summation of the code value indicates a relative
angle to the starting point, and the length of the chain
code indicates the moved distance of the agent. Con-
sider an action series of a reaching action a1; a2; : : : au

and a chain code corresponding to the action series
c= fc1; c2; : : : ; cug, the summation of chain code C is



Figure 5: Local haptic motion.

represented as follows:

C =

uX

i=1

ci (6)

and the length of the chain code L is:

L = u (7)

3.2 Representation of Shape

Shape of an object indicates how the boundary con-
tour of the object varies. The variation of the bound-
ary contour can be perceived by a haptic motion. A
local haptic motion is de�ned as an action series sat-
isfying the following conditions.

1. The agent's body touches an object both at the
starting and at the goal point.

2. The goal point is adjacent to the starting point.

We can calculate a reaching action path between start-
ing and goal points, and a chain code of its action
series. Figure 5 shows an example of a local haptic
motion and a summation of code value C = �1 which
represents a relative angle between the adjacent points
on the object's boundary. The value of jCj becomes
larger in proportion to the relative angle of adjacent
points.

In the example of Figure 5, jCj can represent the
relative angle directly because the same point of the
agent's body touches the object both at the starting
and at the goal point. If the di�erent point of the
agent's body touches the object at the goal point, jCj
does not represent the relative angle. In order to cope
with this problem, we introduce C 0 which represents
an action series that (1)the goal point of the physical
object is similar to the starting point, and that (2)dif-
ferent points of the agent's body touch the object at
the starting and at the goal point. As a result, in such
situation, the relative angle is represented by C + C

0.
If there are m expected touch areas on boundary

of an object, the shape of the object is represented by

Table 2: Objects used in our experiment.
name shape size

obj1 circle radius 2.1

obj2 circle radius 2.8

obj3 circle radius 3.0

obj4 rectangle 3� 5

obj5 rectangle 1:5� 4

obj6 rectangle 3� 3

c= fc1; c2; : : : ; cmg. We call this vector as a shape vec-
tor. The shape vector can represent the characteristics
of the object's shape. For example, an object which
consists of only straight lines and right angles, namely,
rectangle, C can be f0; 0; 4; 0; 0; 4; 0; 0; 4; 0; 0; 4g, and
in the case that the variation of the object boundary
contour is regular like an circle, C can be = f1; 1; 1; 1;
1; 1; 1; 1; 1; 1g . Note that the shape vector does not
change in spite of the change of position and orien-
tation. Because the shape vector includes various in-
formation about shape, we should select appropriate
features so that it can represent the object adequately.
The primary feature is the length of c which corre-
sponds to neighbor the circumference of an object,
i.e., f1 = jC j. The feature of characterizing an object
is represented by frequency analysis such as Fourier
transformation. Consequently, f2; f3; : : : is the Fourier
coe�cient. We call F= ff1; f2; : : :g as a shape char-
acterizing vector.

3.3 Object Recognition

Object recognition is mainly divided into two pro-
cedures; (1)learning of the representation of objects,
and (2)object recognition by this representation. The
learning procedure is as follows:

� Estimation of transition probability.

� Collect examples of various shapes of objects
from experience, and store shape characteriz-
ing vectors. Note that the agent can generate
reaching action paths mentally, i.e., without ac-
tual motion, after the agent knows the transition
probability.

Object recognition is accomplished by means of NN
(nearest neighbor classi�cation). Sample data of NN
is collected examples of shape characterizing vectors.

4 Experimental Results

In order to show the validity of our method, we had
an experiment by computer simulation. In this experi-



(a) (b)

Figure 6: (a)An input image and (b)angular dis-

cretization rule.

ment, the aim of the agent is to recognize objects from
any position and orientation, and categorize them cor-
rectly. Table 2 shows objects used in our experiment.
Note that the size of each object represents the size
in the simulated world not in the input image. Figure
6-(a) shows an input image used in computer simula-
tion. The size of image is 160�160 pixels and the size
of expected touch area and receptor area is 3� 3 pix-
els, therefore there are 53 � 53 possibilities for them.
A circle on the left lower side in the image shows the
body of an agent and another one on the right upper
side shows an object (obj3). Figure 6-(b) shows the
angular discritization rule applied to both the body
of the agent and the object. The angle of a normal
vector of the surface is discritized into 16 steps. As a
result, the number of state is 53� 53� 16.

In this experiment, we assume that the agent has
only one contact point in front of the surface of its
body.

4.1 Learning of the Representation of Ob-
jects

4.1.1 Transition Probability Estimation

Consider a state in an image Si(xi; yi; �i), the pos-
sible number of the next state Si+1(xi+1; yi+1; �i+1) is
a�m�n, where a is a number of actions, m is a num-
ber of adjacent cell in the image, and n is a number
of angular discritization. We assume that transition
probability from any (x; y) in the image is equal.

4.1.2 Calculation of Reaching Action Path

Next we calculate reaching action paths by dynamic
programming using transition probability calculated
above. Figure 7-(a) shows the detected 24 expected
touch areas from Figure 6-(a). We put an agent on the
starting point where detected receptor area is (15; 27;�45).

(a) (b)

Figure 7: (a)Detected ETA and (b)calculated reaching
action path

Figure 8: C and �C value.

Figure 7-(b) shows the calculated 24 reaching action
paths. We also show the C and �C value of each
reaching action paths on Figure 8. �C means di�er-
ence value of C between the adjacent reaching action
paths. Although the agent should do haptic motion
in order to obtain �C value exactly, we use the �C
value relatively obtained from the same starting point
instead.

4.1.3 Extraction of a Shape Characteriz-
ing Vector

We extract shape characterizing vectors from �C.
Extracted features in this experiment are described as
follows. f1 is the length of �C i.e. j�Cj. f2 : : : f5

are Fourier coe�cient extracted by discrete Fourier
transform on �C;

�C(n) =
X

Xke
�i k�nj�Cj (8)

f2 is a real part of X1, f3 is an imaginary part of
X1, f4 is a real part of X2, and f5 is an imaginary
part of X2.

We provided four cases by changing the starting



Table 3: Average of shape characterizing value.
name f1 f2 f3 f4 f5

obj1 16 -1.2 -1.2 0.9 0.7

obj2 22 -0.4 -0.4 -0.9 0.1

obj3 24 -0.6 0.2 0.3 0.1

obj4 24 -0.8 1.9 0 -1.4

obj5 16 -1.0 2.9 0 -2.3

obj6 16 -1.0 -1.1 -0.2 -1.4

Table 4: Object recognition rate.

obj1 obj2 obj3 obj4 obj5 obj6 average

rate 0.75 0.91 0.75 0.91 0.83 1.0 0.85

point, and calculated reaching action paths and shape
characterizing vectors. Table 3 shows the average value
of shape characterizing vectors for each object after 20
trials for each case.

4.2 Discrimination of Objects

We performed object discrimination tests using the
extracted shape characterizing vectors above. We use
NN(nearest neighbor classi�cation) as discrimination
method. We put each object of obj1 : : : obj6 on 12
points and extract shape characterizing vectors and
performed object discrimination tests. Table 4 shows
the average recognition rate of each object. The high-
est value is 1:0, the lowest 0:75, and the average 0:85.
One of the reasons to fail recognition is fail in path
generation. Since the agent may fail to reach objects
because of the scattering of transition probability and
as a result, a correct shape characterizing vector is not

Figure 9: Shape characterizing value of f3-f4.

calculated.
Figure 9 shows the shape characterizing values of

obj2 and obj4 used in the training and test. From this
�gure, we can see that divergence of an object is well
formed, and that there are clear discrimination bound-
ary. This implies that the agent can recognize objects
from any position and orientation, and categorize it to
the correct class.

5 Discussion and Conclusion

In this paper, we propose a method of embodiment-
based visual object recognition. We de�ne the embod-
iment as agent's own size and shape of body and loco-
motive ability. In order to represent an object by em-
bodiment, we employ a reaching action path that rep-
resents the relation between surfaces of the agent body
and the object. Then, agent can acquire the relation
between vision and embodiment through learning of
the path with visual input. By means of this method,
the agent can recognize objects independently from its
position and orientation without prior knowledge. In
other words, acquired representation implies invariant
advocated by Gibson [2].

In the future work, we will try to develop methods
of situation recognition and behavior generation based
on the same architecture.
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