Knowledge Sharing and Organization

by Multiple Ontologies

Motoyuki Takaai, Hideaki Takeda, and Toyoaki Nishida

Graduate School of Information Science,

Nara Ingtitute of Science and Technology

Address. 8916-5,Takayama,lkoma,Nara 630-01 JAPAN
Phone: +81-7437-2-5265 Fax: +81-7437-2-5269

E-mail: motoyu-t@is.aist-nara.ac.jp

Abstract: In this paper, we introduce ontology-centric knowledge organization approach to
realize knowledge base system for sharing and reuse of knowledge. Since ontology is an
intermediate level of information representation between the model and media level of
information, it can work to bridge multiple models and multiple users. To share personal
information among users, they must share their manners of conceptualization which form
personal ontologies. Here we introduce two systems. First, we show knowledge base
system for engineering called Designers Amplifier that organizes poorly-structured
documents. Next, we show the multiple ontology management system called Donden that
enables users to edit multiple ontologies and hel ps users to integrate ontologies.

Keywords: knowledge organization, multiple ontologies, ontology

development environment

Intention “n®

. Media Level
Media Level

] a . Fgrmalization Level
|\ Formalization Level N

Model Level
Model Level

' Product

Figure 2: Levels of Information
Figure 1: Levels of Information

1. Introduction

We get much knowledge from various sources in productive activities. Especidly inthe
large and complex activities, knowledge from others and past experience is very
important. But knowledge is often poorly-organized or unknown to get. Poorly-
organized knowledge is not useful to share among users and to reuse.

Here we discuss the ways to reuse and to share knowledge among people. Ontology,
an explicit specification of conceptualization, organizes knowledge and makes us deep-
understanding. Knowledge of different people is represented by different manner which
is based on their ontologies.

In this paper, we discuss ontology-centric knowledge organization, the way of
knowledge sharing and reuse based by ontology. And we discuss the ways to manage
multiple ontologies and to integrate them.

In the section 2, we show ontology-centric knowledge organization. Inthe section 3,
we show our system called Designers Amplifier based on ontology-centric knowledge

organization. In the section 4, we show the system to manage multiple ontologies and

to help to integrate them. In the last section, we summarize this paper.

2. Ontology-Centric Knowledge Organization

In this section, we discuss how human organize heterogeneous information especialy in

engineering, and show an architecture for knowledge organization.

2.1. Information Levels

Most crucial part of information organization is not in well-structured information but in
unstructured one. Engineers use various kind of information from physica models to
natural languages. We have usually paid attention to so-caled “model”, e.g., 2/3D
model, some mathematical model like thermodynamics and kinematics. Since models
are well investigated and understood, there are many books and studies to handle them.
But models are not sources but results of knowledge organizing formed after much
engineering and scientific effort. Individual engineers try to capture unstructured
information, and some excellent and common organization of information can become
models. Much of their work is done with unstructured information.

Figure 1 illustrates levels of information to deal with. The lowest leve is “model”
level, i.e., information represented as models. The middle leved is“formaization” leve,
where information is represented by some formal language. The difference between the
model and formalization levels is that the former has syntax and semantics, and the latter

hasonly syntax. Thetop level is“media” level where information representation is only

ICOB Client

ICOB Server

Nneiment

~

Moceana

Rrrwcar

Ontalnmy
Rrnawer/
Fditnr

Nlanivatinry

Anonte

Teavte/[emi-
ctriictirad tavie
rnanizin Anpnte

' ﬂ Other ICOR

cean/mre

Figure 3: Architecture for Intelligent Corporate Base
restricted by property of medium which is represented in.

All of these three levels are needed for engineering work, because real engineering
problems are not closed in a single model but should be solved in multiple models. In
genera, the lower levels can ded with only specific domains and can offer specific
solutions in those domains. On the other hand, the upper level can deal with wider
domains but can offer less specific solutions. The middle level can offer interface
between both levels.

Design process is performed by penetrating the media, formalization, and model levels
in order (see Figure 3). When domain of design is quite new, much effort of design is
done in the media level before going the lower levels. On the other hand, when domain
iswell investigated, the media level is relatively less important and much work is done in
the moddl level.

The same situation happens when engineers communicate to each other (See Figure 3).
They are sometimes devoted to communication in the model level, and sometimes

wandering from the model level to the medialeve.

2. 2. Role of Ontology in Knowledge Representation

We discuss the formalization level as “ontology” in this paper. Although ontology
cannot capture al functions of the formalization level, it can offer one way to connect the
media and mode! levels.

Ontology is a term in philosophy and defined as “the branch of metaphysical enquiry
concerned with the study of existence itself” [1]. In Al community, an ontology is
defined as “an explicit specification of conceptualization” [2] which isintended to use as
base for knowledge representation. Ontology is represented as systems of symbols in
computers, i.e., symbols and their relations represents concepts and their relations.
Ontology commits only declarative nature of systems of concepts because its purpose is
to provide consent for knowledge representation, e.g., identification of concepts.

Therefore ontology is adequate as representation for the formalization level.

2.3. An Architecture for Ontology-Centric Knowledge Organization

The above discussion leads us an approach for knowledge based systems called
ontology-centric knowledge organization. In this approach, roles of ontologies are
bridges between multiple models, between the model and the media level
representation, and multiple users.

Figure 3 shows an architecture for engineering knowledge and communication bases

caled ICoB (Intelligent Corporate Base) which is based on ontol ogy-centric knowledge

organization approach.

There are servers which contains shared documents and communication messages,
and clients each of which an engineer uses. Users can retrieve or submit documents or
communication messages by using shared and private ontologies. The ICoB servers
organize documents and messages by using ontologies which consist of shared and users
ontologies. At the same time, they can extend and their ontologies by referring and
comparing shared and other private ontologies. The latter process corresponds
organization of information we discussed in the previous section. 1CoB clients and
servers can have some facilities to assist users information organization.

There are some projects and studies related to this approach. For example, PACT
Project[3] is a good example for integration of engineering process with multiple
engineers. Ontolingua Server Project at Stanford[4] is studying an testing collaborative
ontology construction. Enterprise modeling (e.g., Ref. [5]) is partially related to it.
While these systems expect knowledge engineers who are different from engineers, our
am is to provide environments for engineers which can be evolved by activities of

engineers themselves.

3. Designers Amplifier

Designers Amplifier is the knowledge base system which supports engineers. The
systems to supports engineers to access design knowledge should have the following

properties;

User Browser Query word

— ﬁ

editing ontology

Related L\

concepts

Search by
Col locations
and Ontolog

Ontology
manager

searched
documents

Semi—forma pcation

documents

I izedx

rrFE ieml_l' Col location
ormalize calculator
program

Documents

Server of ontology
and documents

Figure 5: The architecture of Designers Amplifier (Ver. 1.0)

1. adapt wide situations,
2. assist designers continuously, and
3. beintimate to designers.
The first requirement means that the systems should cover as wide domains as possiblein
design processes. As mentioned in the previous section, model-centered systems
provide deep information in narrow domains, while the systems should adapt various
situations that designers would encounter. The second requirement is needed to realize
knowledge-level support for designers. The systems should aways track what
designers are doing in order to estimate their intention. The third one is somewhat
additional requirement to the second one. To realize continuous support to designers,
designers should be willing to use the systems.

Designers Amplifier is our current prototype system to support designers from the
media level to the model level totaly. It is designed to evaluate how the current

information technologies can contribute to support designers in ontology-centric

DA Client (Interface Agent)

Enhancement By
personal ontologies{ s

\ Multimeida
Communication

"\ Communication enhaced by
organized knolwedge

-~

Media level | ForumBase & Document base
p

Formalization

Cfitology sharing
level

Model level

Figure 4: Concept of Designers Amplifier

knowledge organization approach. The basic idea of this system is agent that enhances
designers access to information sources and other designers (see Figure 4). Designers
can access information sources with support of Designers Amplifier, e.g., by adding
related information, at the same time Designers Amplifier can collect designers behavior
by monitoring their information access. Information access and communication is
sometimes purely in media level, sometimes in both media and formalization levels, and
sometimes in media, formalization, and modedl levels. Designers Amplifier mainly

supports media and formalization levels, and can connect model-centered systems.

3.1. Designers Amplifier (Ver. 1.0)

The current implementation (Designers Amplifier Ver. 1.0) is a smple system in which
only accumulated textua documents are handled. The main function is to organize
documents by ontologies. Each document is associated to ontologies, i.e., it is modified

to hyper texts which link concepts in the documents and concepts in ontologies.

Designers Amplifier also estimates relations among concepts in ontologies by calculating
co-occurrence of concepts in the whole set of documents. Each user can retrieve
documents by using concepts in ontologies and know what concepts are included in each
document. Furthermore she/he can modify ontologies by referring documents.
Modification by users are then reflected to organization of documents.

The architecture of the current implementation (Designers Amplifier Ver. 1.0) is
shownin Figure 5. It consists of a Designers Amplifier server and clients.

The server has mainly two functions, i.e., to maintain ontologies and to organize and
maintain documents. In the current implementation, ontologies are frame ontologies
which can be easlly trandated into Ontolingua[6]. Each concept has its name,
expression, and dots. Expression specifies how the concept appears in documents.
There are super-sub class relations and other relations between concepts. The server
maintains common and personal ontologies. The former is provided by system
developers and therefore cannot be edited by users. The latter is a set of user
ontologies each of which is edited by a user. A user can view and use concepts in
ontologies of other users, and can add relations to concepts of others.

The server accepts documents and organizes and modifies them by these ontologies.
The system analyzes the given documents to find concepts in the ontologies. If an
expression of concepts matches texts in documents, the system adds a hyper-link to the
concept. Then, the system calculates co-occurrence of concepts by counting set of

concepts which appear in a document together.

92713

B frame

M RED Fortn B ERcAYD A
& =2 @ o @ G- AB =
Bs #n Rk FH f-h tie mmoA BRI b AL BE
TRU. [htte:/7aimwwmn aist-naraac o dec peapler matayu-t/kigurumi/3/ project/nigeld/ hemer user A/ main htmi | Hj Uk

please input concept

wheel

frame =searchByCallacation | searshByCntalogy

shumb ohes | (0.5) L/project/nigel3/doc/nc3eg html((O 5)) bieysle
e el | /project/nigel3/doc/nedal html (0.5 N s
po———— Eg 2)5) project./nigesl3/doc/nc3am html (0.25) N [[BgE]| L]
./project/nigel3/doc/nclbf.html (0.25) ; 2 mentar bike
rheel |(0.0416665666666657) project/nigel3/doc /nc3br html (0.125) FE oft-road bks
frame | (0.0178571428571429) ./project/nizel8/doc /ncdbp.html (0.0833333333333333)

project/nizel3/doc/nc3bu html (0.0833333333333333)
_/project/nigel3/doc/nclas himl (0.0535714285714286)
project /nigel3/doc /nc3bh html (0053571428571 4286)
project/nigel3/doc/ncdba html (0.0416666666666667)
./project/nigel3/doc/ncdblhtml (0.0416666666666667)
project/nigesl3/doc/ncdbn html (0.0415666666666667)
/project/nigel3/doc/ncdbt.himl (0.0416666566666667)

1361 J:: | mean see the the beauty(_ beauty |} of this though is it comes out of these things really
quickly on the braze—on{ _braz=en |} it's not gonna come out real quick

1362 |:: what if you screw(__sorem | this to the braze—on{ _brazeen |}

1363 K:: or you could even have er the threaded piecel _ pisce |}

1364 |:: you could say it screwl _ ssrem |}

1365 K:: that zoes in there you could have a big thumb wheell thume wheel|) on it rather than

1366 J. veah are braze—on{ _brez=en |} tapped usually

1367 K veah they're tapped
1368 J:: they are OK

1869 K:: they're a standard screw thread(serew thread|)
1870 J:- design(ﬂl) assumption(_assumptien |) great we're Lsing tapped braze—on(braz=an
)

Expression

1871 I do they have (naudible)

1372 K2 yeah it diameter [length [

1373 J Msix | don't know Add rew slot

17 | ela ey liEve semeiiies e det Done | Gancel | Hide | Delet= | ShowSubClass | ShowSuperclass
1375 J: um s0 veah like vou could have r —I —I—I —QI —I £
1376 |:; that would be very simple then i T bsb Tk

1377 K:: @ big knob{ kb |}

1878 J:: just two knob{ kmet |3

=
userADA AT =I5

version 1.5

;g]ze—}l & o v | EEolLhe | [¥%Dhol¥m. | Jod 9275 £21 | ¥4 Dhol¥m. | ¥%Dhol¥m. | [E]Microsaft | I DF¥HOMEY, | (Heo 7L+, | B frame - .. FoOntobay . | Eokss Edit | | AGENDEE 27

Figure 6. Outlook of Designers Amplifier (Ver. 1.0)

The client system is provided for each user. The outlook of the client is shown in
Figure 6. It consists of three components, i.e., document retrieval, document browsing,
and ontology browsing. The user can retrieve documents by ontologies or co-
occurrence of concepts. The top window of Figure 6 is the input window and the
middle-right window is results of retrieval.

The bottom window isawindow for document browsing. Buttonsin texts are added
to original documents by the system. Each button links to an icon in the ontology
browsing window. The ontology browsing window (shown bellow the retrieval and

document browsing window) shows concepts in ontologies and their relations

graphically, and alows users to edit ontologies. The small popped-up window is an

editing window for concepts.

3.2. Experiments

We applied this system to two domains. One is protocol data for design which was
used in design studies[7]. The other is documents of development of information
systemsfor afactory. We describe how this system works by using the former case.

In the protocol data we used, arack of bicycle is designed by three designers for two
hours. We regard this protocol data as a set of documents by cutting it by twenty lines.
We extracted more than 700 concepts which are used in this design, and organized them
as ontology.

Then the protocol data is transformed into texts tagged by concepts in the ontology.
Designer Amplifier holds this tagged protocol data as organized documents and the
ontology as common ontology. The user can retrieve the protocol data either by
ontological relations or by co-occurrence relations. For example, Figure 6 shows the
user retrieves the protocol data by the words ‘whedl' and ‘frame’ and browses the
ontology. In the top window, user put the words 'whed' and ‘frame and pushed
‘searchByOntology’ button. Then in the middle window the system returns the result.
The left window shows the sub class concepts of wheel and frame and their importance
values which are computed from the occurrence frequency. The right window shows a
document list asthe search result. The bottom window shows one document in the list.

The some words in the bottom window are click-able. When user clicks them, the

concept appears in the ontology window. The large bellow window shows the example
of this ontology. It shows the front wheel, thumb wheel, and rear wheel is subclass

concept of whedl. In the small bellow window, user is editing the concept whed!.

4. Donden: a distributed ontology development environment

Donden is a ontology development tool which enables users to build multiple ontologies
and helps users to integrate them.

Multiple ontologies allows multiple descriptions per concept. In ontology building
by Donden, users can make concepts which have links to concepts in other's ontologies

and users can see similarity of concepts for integration.

4.1. Multiple ontology of Donden

Figure 7 is the architecture of Donden. Donden consists of ontology browser which is
provided for each user and ontology server which is provided for a group of users who
want to share ontologies. Ontology browser helps user to edit ontology and to make
links to other user's ontology by graphical user interface. Ontology server manages
multiple ontologies at the same time by using an ontology description language
ASPECTOL[8]. Ontology server helps users to synthesize ontologies by computing
similarity between concepts of ontologies. Ontology server and ontology browser are

realized asthe KQML[9] agents.

Ontology
Server

ASPECTOL or (define-class rail:fare (?fare)
Ontolingua expression - gef
(and

(has-one ?fare rail:adult-fare)

(val ue-type ?fare rail:adul t-fare Basic: noney)
(has-one ?fare rail:child-fare)

(val ue-type ?fare rail:child-fare Basic: noney)))

Figure 9: the fare class of rail way
Figure 7: the architecture of Donden

B R e R |

Rail . ..
search by class name I ather browser | show root classes (de“ ne-class taxi:fare (?f are)
@ " : def
=
Basicimoney train (and

(has-one ?fare taxi:fare)
(val ue-type ?fare taxi:fare Basic:noney)))

Tl i f
freight-train passenger—train

= . .
i Figure 10: the fare class of taxi
zzmi:—superclass o limtted-erpress-train
add-subclass of f-duty-train 7w

add-instance —— T
T S |

T 3 cl

o ype : class

express-train Mame 1 |fare

Class Variable :i?far‘e

local-train fAdd Super Class |

local—ex;?ess—tr‘ain Slot :|has—une adult-fare IBaSic:mUneg
|has-one child-fare |Basicinaney
L !] Add Slot|
UkICancelI

Figure 8: Ontology Browser

Figure 12: Editing class by Ontology
Browser

4.1.1. Frame ontology of Ontolingua

Ontolingua is an ontology description language which was made by KSE (Knowledge
Sharing Effort) of DARPA. With Ontolingua, we can write declarative frame
expresson. We can define classes, relations, functions, and instances by using
Ontolingua primitives as define-class, define-relation, define-function, and define-
instance.

4.1.2. Aspect

(1) | timepoint:universal-time-spec
timepoint:long-time-spec hgﬁhﬁgwﬁ&ﬂ@%;ct*
timepoint:calendar-date 7

timepoint:calendar-year

(2) | hotelguide:hotel

guesthouse: guesthouse
hotel-with-building-information:hotel
business-hotel:hotel
generic-hotel:hotel

L Hi
s T

(3) | overnight-with-two-meals:hotel-charge i
overnight-with-breakfast:hotel-charge
overnight-without-meals:hotel-charge
lowest-highest-room: hotel-charge

(4) | move-with-traffic:transfer
move-with-place:destination e irtornationgt e

R

Figure 13: Cluster of a concept for

travel Figure 14:Classes arranged by multi-

dimensiona scaling

Generally, a concept has different

descriptions. To share the concept among systems, we must use a common description
for the concept. But different systems usually have different descriptions for a concept
because of differences of their purpose and a point of view. It may disturb users to
understand each other. Aspect is a framework which can manage such different
descriptions of concepts. Ontology is a set of the concept units called aspect.
Different aspects for a concept are different expressions for it. And trandation rules
between aspects enable users to share knowledge.

Figure 9 and Figure 10 are the example expressions of the rail and taxi fare systems.
The description after :def is a necessary condition for the instance (shown by ?fare) into
the class. In Figure 9, the instance is defined as a thing with one adult-fare dot (the

type is Basic:money) and one child-fare dot (the type is also Basic:money).

Figure 11 shows an example of the trandation rule from taxi fare to rail fare. The
taxi:fare dot of ?taxi-fare is trandated to the rail:adult-fare slot of ?rail-fare and the

rail:child-fare slot of ?rail-fare.

4.2. Editing ontology by Donden

Donden provides Ontology Browser for each user and Ontology Server for a group of
users who want to share ontologies.
Ontology Server has following functions.
1. Management of users
2. Management of ontology for each ontology builder
3. Support of integration of concepts for ontology builders

4. Trandation between expression inside Ontology Server and Ontolingua

Ontology Browser exchanges information of ontologies with Ontology Server and
realizes the following functions.
1. To indicate class and class-instance relations by using graph and to edit ontology
visudly
2. To browse other user's ontologies to use
We implemented the prototype of Ontology Browser and Ontology Server by scheme
interpreter, STK.

Figure 8 shows that arail road user makes ontology by using Ontology Browser. In

thisfigure, there are a class hierarchy about train, a class about train and a class about the
money which is brought in from Basic ontology builder. Edit is chosen in the pop-up
menu of fare class in this screen.

Figure 8 shows the scene editing the fare actually. Here, we can edit class name, slot
and so on.

Ontology Server trandates the class of fare into Ontolinguain Figure 9.

4.3. Support of ontology integration

Donden supports ontology integration by collecting ssmilar expression of concepts and
showing them to ontology builders. We employ hierarchical cluster analyses as the
method of collecting similar classes and multidimensional scaling (TypelV quantification
method) as the method of arranging the classes on a plane.

4.3.1 Method of calculating similarity of concepts

Mainly there are following similarity relations between classes.

1. same concepts of different expressions

2. similar expressions of different concepts (e.g. super - subclass relation and so on)

The examples of Figure 9 and Figure 10 have the same name fare. Since they are not
the same concepts, their relation belongs to (2). To count the similarity of classes we
use the following properties;

1. nameof class

2. names of super class and sub class

3. name of dot and type of slot
4. instance that belongs to the class
5. relations and the functions which use the class

6. document of the class

Donden calculates the similarity of classes by using this information and shows the
possibility of concept integration to ontology builder.

We performed an experiment for integration of class expresson. In this case the
calculation of the similarity is a sum of the name similarity of each dot combination.
The other types of information are omitted. The name smilarity is
® 10if they are same name.
® 0.5if one name includes the other.
® 0.0€esecase
4.3.2. Collecting similar concepts by hierarchical cluster analysis
Figure 13 is the result of the experience of hierarchical cluster analysis with the method
of caculating similarity. The ontology forigure this experiment is a set of aspects for
travel concepts e.g. time, hotel and sightseeing place. It iswritten in Ontolingua [2,8].
This table shows four highest clusters. The cluster (1) includes all about time, and the
cluster (2) all about hotel in the given ontology. Thus we can collect similar concepts
from the similarity of dot expression.

4.3.3. Arranging concepts by multidimensional scaling
Figure 14 is the result of the experiment by multidimensiona scaling from the same

ontology and the same method of calculating similarity with hierarchical cluster anaysis.

We can also find some groups from it. The groups are classified three types as follows:

1. Thegroup of same or similar concepts. For example, the four classes enclosed by
ova A on Figure 14 are al about time.

2. The group including different concepts which have same property concept. For
example, the three classes enclosed by ova B on Figure 14 are "transfer”,
"destination™ and "temple" which have the transportation slot.

3. The others. Sometimes, we can find some groups in the group by zooming in. For
example, the twelve classes enclosed by ova C on Figure 14 further consists three
groups (five classes about hotel, six classes about hotel-charge and one class about

museum).

5. Summery

We discussed two systems for knowledge sharing and reuse. One is the document
browsing and organizing system. The other is the ontology browsing and integration
supporting system. Both of systems aim to share persona knowledge among users.
We show the Designers Amplifier can organize the poorly-structured engineering
information since mixture of media and formalized representation can facilitate deep-
understanding among users. We show Donden can manage multiple ontologies among
users and help to integrate them by calculating similarity of concepts.

We are going to integrate the two system and apply to rea and larger engineering

domains to know how it can contribute knowledge organization.

References

[1] Flew, A.(editor) A Dictionary of Philosophy, Pan Books, 1979.

[2] Gruber, T.R. Toward principles for the design of ontologies used for knowledge
sharing. Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford

University, August 1993.

[3] Cutkosky, M.R. Engelmore, R.S. Fikes, R.E. Genesereth, M.R. Gruber, T.R.
Mark, W.S. Tenenbaum, J.M. and Weber, J.C. PACT: An experiment in integrating

concurrent engineering systems. IEEE Computer, 1993; January: 28—38.

[4] Farquhar, A. Fikes, R.E. Pratt, W. and Rice, J. Collarborative ontology
congtruction for information integration. Technical Report KSL 95-63, Knowledge

Systems Laboratory, Stanford University, 1995.

[5] Fraser, J. and Tate, A. The enterprise tool set—an open enterprise architecture.

In Proc. IJCAI’ 96 Workshop on Intelligent Manufacturi ng Systems, 1995.

[6] Gruber, T.R. Ontolingua: A mechanism to support portable ontologies. Technical

Report KSL 91-66, Stanford University, Knowledge Systems Laboratory, 1992.

[7] Takeda, H. Yoshioka, M. Tomiyama, T. and Simomura, Y. Anayss of design
processes by functional evaluation process. Anaysing Design Activity (Nige
Cross,Henri Christaans,and Kees Dorst,editors), Chichester, John Wiley & Sons, 1995,

187—209.

[8] Takeda, H. lino, K. and Nishida, T. Agent organization and communication with
multiple ontologies. the International Journal of Cooperative Information Systems,

1995; 4(4): 321—337.

[9] Finin, T. Weber, J. Wiederhold, G. Genesereth, M. Fritzson, R. McKay, D.
McGuire, J. Pdavin, P. Shapiro, S. and Beck, C. Specification of the KQML
agent-communication language. Technica Report EIT TR 92-04, Enterprise

Integration Technologies, 1992 (Updated July 1993).

