
Knowledge Sharing and Organization

by Multiple Ontologies

Motoyuki Takaai, Hideaki Takeda, and Toyoaki Nishida

Graduate School of Information Science,

Nara Institute of Science and Technology

 Address: 8916-5,Takayama,Ikoma,Nara 630-01 JAPAN

 Phone: +81-7437-2-5265 Fax: +81-7437-2-5269

 E-mail: motoyu-t@is.aist-nara.ac.jp

Abstract: In this paper, we introduce ontology-centric knowledge organization approach to
realize knowledge base system for sharing and reuse of knowledge. Since ontology is an
intermediate level of information representation between the model and media level of
information, it can work to bridge multiple models and multiple users. To share personal
information among users, they must share their manners of conceptualization which form
personal ontologies. Here we introduce two systems. First, we show knowledge base
system for engineering called Designers Amplifier that organizes poorly-structured
documents. Next, we show the multiple ontology management system called Donden that
enables users to edit multiple ontologies and helps users to integrate ontologies.

Keywords: knowledge organization, multiple ontologies, ontology

development environment

1. Introduction

We get much knowledge from various sources in productive activities. Especially in the

large and complex activities, knowledge from others and past experience is very

important. But knowledge is often poorly-organized or unknown to get. Poorly-

organized knowledge is not useful to share among users and to reuse.

 Here we discuss the ways to reuse and to share knowledge among people. Ontology,

an explicit specification of conceptualization, organizes knowledge and makes us deep-

understanding. Knowledge of different people is represented by different manner which

is based on their ontologies.

 In this paper, we discuss ontology-centric knowledge organization, the way of

knowledge sharing and reuse based by ontology. And we discuss the ways to manage

multiple ontologies and to integrate them.

In the section 2, we show ontology-centric knowledge organization. In the section 3,

we show our system called Designers Amplifier based on ontology-centric knowledge

organization. In the section 4, we show the system to manage multiple ontologies and

Engineer

Media Level

Formalization Level

Model Level

Engineer

Figure 2: Levels of Information

Engineer

Media Level

Formalization Level

Model Level

Intention

Product

Figure 1: Levels of Information

to help to integrate them. In the last section, we summarize this paper.

2. Ontology-Centric Knowledge Organization

In this section, we discuss how human organize heterogeneous information especially in

engineering, and show an architecture for knowledge organization.

2. 1. Information Levels

Most crucial part of information organization is not in well-structured information but in

unstructured one. Engineers use various kind of information from physical models to

natural languages. We have usually paid attention to so-called “model”, e.g., 2/3D

model, some mathematical model like thermodynamics and kinematics. Since models

are well investigated and understood, there are many books and studies to handle them.

But models are not sources but results of knowledge organizing formed after much

engineering and scientific effort. Individual engineers try to capture unstructured

information, and some excellent and common organization of information can become

models. Much of their work is done with unstructured information.

 Figure 1 illustrates levels of information to deal with. The lowest level is “model”

level, i.e., information represented as models. The middle level is “formalization” level,

where information is represented by some formal language. The difference between the

model and formalization levels is that the former has syntax and semantics, and the latter

has only syntax. The top level is “media” level where information representation is only

restricted by property of medium which is represented in.

 All of these three levels are needed for engineering work, because real engineering

problems are not closed in a single model but should be solved in multiple models. In

general, the lower levels can deal with only specific domains and can offer specific

solutions in those domains. On the other hand, the upper level can deal with wider

domains but can offer less specific solutions. The middle level can offer interface

between both levels.

 Design process is performed by penetrating the media, formalization, and model levels

in order (see Figure 3). When domain of design is quite new, much effort of design is

done in the media level before going the lower levels. On the other hand, when domain

is well investigated, the media level is relatively less important and much work is done in

the model level.

 The same situation happens when engineers communicate to each other (See Figure 3).

They are sometimes devoted to communication in the model level, and sometimes

wandering from the model level to the media level.

Figure 3: Architecture for Intelligent Corporate Base

Ontologies

Nagivation
Agents

Organizig Agents

Document/
Message
Browser

Ontology
Broswer/
Editor

Message Server

structured texts

Document Server

Texts/Semi-

Network

ICOB Server
ICOB Client

Other ICOB
servers

2. 2. Role of Ontology in Knowledge Representation

We discuss the formalization level as “ontology” in this paper. Although ontology

cannot capture all functions of the formalization level, it can offer one way to connect the

media and model levels.

 Ontology is a term in philosophy and defined as “the branch of metaphysical enquiry

concerned with the study of existence itself” [1]. In AI community, an ontology is

defined as “an explicit specification of conceptualization” [2] which is intended to use as

base for knowledge representation. Ontology is represented as systems of symbols in

computers, i.e., symbols and their relations represents concepts and their relations.

Ontology commits only declarative nature of systems of concepts because its purpose is

to provide consent for knowledge representation, e.g., identification of concepts.

Therefore ontology is adequate as representation for the formalization level.

2.3. An Architecture for Ontology-Centric Knowledge Organization

The above discussion leads us an approach for knowledge based systems called

ontology-centric knowledge organization. In this approach, roles of ontologies are

bridges between multiple models, between the model and the media level

representation, and multiple users.

 Figure 3 shows an architecture for engineering knowledge and communication bases

called ICoB (Intelligent Corporate Base) which is based on ontology-centric knowledge

organization approach.

 There are servers which contains shared documents and communication messages,

and clients each of which an engineer uses. Users can retrieve or submit documents or

communication messages by using shared and private ontologies. The ICoB servers

organize documents and messages by using ontologies which consist of shared and users'

ontologies. At the same time, they can extend and their ontologies by referring and

comparing shared and other private ontologies. The latter process corresponds

organization of information we discussed in the previous section. ICoB clients and

servers can have some facilities to assist users' information organization.

 There are some projects and studies related to this approach. For example, PACT

Project[3] is a good example for integration of engineering process with multiple

engineers. Ontolingua Server Project at Stanford[4] is studying an testing collaborative

ontology construction. Enterprise modeling (e.g., Ref. [5]) is partially related to it.

While these systems expect knowledge engineers who are different from engineers, our

aim is to provide environments for engineers which can be evolved by activities of

engineers themselves.

3. Designers Amplifier

Designers Amplifier is the knowledge base system which supports engineers. The

systems to supports engineers to access design knowledge should have the following

properties;

1. adapt wide situations,

2. assist designers continuously, and

3. be intimate to designers.

The first requirement means that the systems should cover as wide domains as possible in

design processes. As mentioned in the previous section, model-centered systems

provide deep information in narrow domains, while the systems should adapt various

situations that designers would encounter. The second requirement is needed to realize

knowledge-level support for designers. The systems should always track what

designers are doing in order to estimate their intention. The third one is somewhat

additional requirement to the second one. To realize continuous support to designers,

designers should be willing to use the systems.

 Designers Amplifier is our current prototype system to support designers from the

media level to the model level totally. It is designed to evaluate how the current

information technologies can contribute to support designers in ontology-centric

Figure 5: The architecture of Designers Amplifier (Ver. 1.0)

knowledge organization approach. The basic idea of this system is agent that enhances

designers' access to information sources and other designers (see Figure 4). Designers

can access information sources with support of Designers Amplifier, e.g., by adding

related information, at the same time Designers Amplifier can collect designers' behavior

by monitoring their information access. Information access and communication is

sometimes purely in media level, sometimes in both media and formalization levels, and

sometimes in media, formalization, and model levels. Designers Amplifier mainly

supports media and formalization levels, and can connect model-centered systems.

3.1. Designers Amplifier (Ver. 1.0)

The current implementation (Designers Amplifier Ver. 1.0) is a simple system in which

only accumulated textual documents are handled. The main function is to organize

documents by ontologies. Each document is associated to ontologies, i.e., it is modified

to hyper texts which link concepts in the documents and concepts in ontologies.

Media level

Formalization
level

Model level

Forum Base

Ontology sharing

Multimeida
Communication

Communication enhaced by
organized knolwedge

Enhancement by
personal ontologies

Designer

Document base

DA Client (Interface Agent)

Figure 4: Concept of Designers Amplifier

Designers Amplifier also estimates relations among concepts in ontologies by calculating

co-occurrence of concepts in the whole set of documents. Each user can retrieve

documents by using concepts in ontologies and know what concepts are included in each

document. Furthermore she/he can modify ontologies by referring documents.

Modification by users are then reflected to organization of documents.

 The architecture of the current implementation (Designers Amplifier Ver. 1.0) is

shown in Figure 5. It consists of a Designers Amplifier server and clients.

 The server has mainly two functions, i.e., to maintain ontologies and to organize and

maintain documents. In the current implementation, ontologies are frame ontologies

which can be easily translated into Ontolingua[6]. Each concept has its name,

expression, and slots. Expression specifies how the concept appears in documents.

There are super-sub class relations and other relations between concepts. The server

maintains common and personal ontologies. The former is provided by system

developers and therefore cannot be edited by users. The latter is a set of user

ontologies each of which is edited by a user. A user can view and use concepts in

ontologies of other users, and can add relations to concepts of others.

 The server accepts documents and organizes and modifies them by these ontologies.

The system analyzes the given documents to find concepts in the ontologies. If an

expression of concepts matches texts in documents, the system adds a hyper-link to the

concept. Then, the system calculates co-occurrence of concepts by counting set of

concepts which appear in a document together.

 The client system is provided for each user. The outlook of the client is shown in

Figure 6. It consists of three components, i.e., document retrieval, document browsing,

and ontology browsing. The user can retrieve documents by ontologies or co-

occurrence of concepts. The top window of Figure 6 is the input window and the

middle-right window is results of retrieval.

 The bottom window is a window for document browsing. Buttons in texts are added

to original documents by the system. Each button links to an icon in the ontology

browsing window. The ontology browsing window (shown bellow the retrieval and

document browsing window) shows concepts in ontologies and their relations

Figure 6: Outlook of Designers Amplifier (Ver. 1.0)

graphically, and allows users to edit ontologies. The small popped-up window is an

editing window for concepts.

3.2. Experiments

We applied this system to two domains. One is protocol data for design which was

used in design studies[7]. The other is documents of development of information

systems for a factory. We describe how this system works by using the former case.

 In the protocol data we used, a rack of bicycle is designed by three designers for two

hours. We regard this protocol data as a set of documents by cutting it by twenty lines.

We extracted more than 700 concepts which are used in this design, and organized them

as ontology.

 Then the protocol data is transformed into texts tagged by concepts in the ontology.

Designer Amplifier holds this tagged protocol data as organized documents and the

ontology as common ontology. The user can retrieve the protocol data either by

ontological relations or by co-occurrence relations. For example, Figure 6 shows the

user retrieves the protocol data by the words 'wheel' and 'frame' and browses the

ontology. In the top window, user put the words 'wheel' and 'frame' and pushed

‘searchByOntology’ button. Then in the middle window the system returns the result.

The left window shows the sub class concepts of wheel and frame and their importance

values which are computed from the occurrence frequency. The right window shows a

document list as the search result. The bottom window shows one document in the list.

The some words in the bottom window are click-able. When user clicks them, the

concept appears in the ontology window. The large bellow window shows the example

of this ontology. It shows the front wheel, thumb wheel, and rear wheel is subclass

concept of wheel. In the small bellow window, user is editing the concept wheel.

4. Donden: a distributed ontology development environment

Donden is a ontology development tool which enables users to build multiple ontologies

and helps users to integrate them.

 Multiple ontologies allows multiple descriptions per concept. In ontology building

by Donden, users can make concepts which have links to concepts in other's ontologies

and users can see similarity of concepts for integration.

4.1. Multiple ontology of Donden

Figure 7 is the architecture of Donden. Donden consists of ontology browser which is

provided for each user and ontology server which is provided for a group of users who

want to share ontologies. Ontology browser helps user to edit ontology and to make

links to other user's ontology by graphical user interface. Ontology server manages

multiple ontologies at the same time by using an ontology description language

ASPECTOL[8]. Ontology server helps users to synthesize ontologies by computing

similarity between concepts of ontologies. Ontology server and ontology browser are

realized as the KQML[9] agents.

4.1.1. Frame ontology of Ontolingua

Ontolingua is an ontology description language which was made by KSE (Knowledge

Sharing Effort) of DARPA. With Ontolingua, we can write declarative frame

expression. We can define classes, relations, functions, and instances by using

Ontolingua primitives as define-class, define-relation, define-function, and define-

instance.

4.1.2. Aspect

Figure 12: Editing class by Ontology
Browser

 (define-class rail:fare (?fare)
:def
 (and
 (has-one ?fare rail:adult-fare)
 (value-type ?fare rail:adult-fare Basic:money)
 (has-one ?fare rail:child-fare)
 (value-type ?fare rail:child-fare Basic:money)))

Figure 9: the fare class of rail way

(define-class taxi:fare (?fare)
 :def
(and
 (has-one ?fare taxi:fare)
 (value-type ?fare taxi:fare Basic:money)))

Figure 10: the fare class of taxi

Figure 8: Ontology Browser

Figure 7: the architecture of Donden

Generally, a concept has different

descriptions. To share the concept among systems, we must use a common description

for the concept. But different systems usually have different descriptions for a concept

because of differences of their purpose and a point of view. It may disturb users to

understand each other. Aspect is a framework which can manage such different

descriptions of concepts. Ontology is a set of the concept units called aspect.

Different aspects for a concept are different expressions for it. And translation rules

between aspects enable users to share knowledge.

Figure 9 and Figure 10 are the example expressions of the rail and taxi fare systems.

The description after :def is a necessary condition for the instance (shown by ?fare) into

the class. In Figure 9, the instance is defined as a thing with one adult-fare slot (the

type is Basic:money) and one child-fare slot (the type is also Basic:money).

(1) timepoint:universal-time-spec
 timepoint:long-time-spec
 timepoint:calendar-date
 timepoint:calendar-year

(2) hotelguide:hotel
 guesthouse:guesthouse
 hotel-with-building-information:hotel
 business-hotel:hotel
 generic-hotel:hotel

(3) overnight-with-two-meals:hotel-charge
 overnight-with-breakfast:hotel-charge
 overnight-without-meals:hotel-charge
 lowest-highest-room:hotel-charge

(4) move-with-traffic:transfer
 move-with-place:destination

Figure 13: Cluster of a concept for

travel Figure 14:Classes arranged by multi-

dimensional scaling

Figure 11 shows an example of the translation rule from taxi fare to rail fare. The

taxi:fare slot of ?taxi-fare is translated to the rail:adult-fare slot of ?rail-fare and the

rail:child-fare slot of ?rail-fare.

4.2. Editing ontology by Donden

Donden provides Ontology Browser for each user and Ontology Server for a group of

users who want to share ontologies.

 Ontology Server has following functions.

1. Management of users

2. Management of ontology for each ontology builder

3. Support of integration of concepts for ontology builders

4. Translation between expression inside Ontology Server and Ontolingua

 Ontology Browser exchanges information of ontologies with Ontology Server and

realizes the following functions.

1. To indicate class and class-instance relations by using graph and to edit ontology

visually

2. To browse other user's ontologies to use

 We implemented the prototype of Ontology Browser and Ontology Server by scheme

interpreter, STk.

 Figure 8 shows that a rail road user makes ontology by using Ontology Browser. In

this figure, there are a class hierarchy about train, a class about train and a class about the

money which is brought in from Basic ontology builder. Edit is chosen in the pop-up

menu of fare class in this screen.

 Figure 8 shows the scene editing the fare actually. Here, we can edit class name, slot

and so on.

 Ontology Server translates the class of fare into Ontolingua in Figure 9.

4.3. Support of ontology integration

Donden supports ontology integration by collecting similar expression of concepts and

showing them to ontology builders. We employ hierarchical cluster analyses as the

method of collecting similar classes and multidimensional scaling (TypeIV quantification

method) as the method of arranging the classes on a plane.

4.3.1 Method of calculating similarity of concepts

Mainly there are following similarity relations between classes.

1. same concepts of different expressions

2. similar expressions of different concepts (e.g. super - subclass relation and so on)

 The examples of Figure 9 and Figure 10 have the same name fare. Since they are not

the same concepts, their relation belongs to (2). To count the similarity of classes we

use the following properties;

1. name of class

2. names of super class and sub class

3. name of slot and type of slot

4. instance that belongs to the class

5. relations and the functions which use the class

6. document of the class

 Donden calculates the similarity of classes by using this information and shows the

possibility of concept integration to ontology builder.

 We performed an experiment for integration of class expression. In this case the

calculation of the similarity is a sum of the name similarity of each slot combination.

The other types of information are omitted. The name similarity is

l 1.0 if they are same name.

l 0.5 if one name includes the other.

l 0.0 else case.

4.3.2. Collecting similar concepts by hierarchical cluster analysis

Figure 13 is the result of the experience of hierarchical cluster analysis with the method

of calculating similarity. The ontology forigure this experiment is a set of aspects for

travel concepts e.g. time, hotel and sightseeing place. It is written in Ontolingua [2,8].

This table shows four highest clusters. The cluster (1) includes all about time, and the

cluster (2) all about hotel in the given ontology. Thus we can collect similar concepts

from the similarity of slot expression.

4.3.3. Arranging concepts by multidimensional scaling

Figure 14 is the result of the experiment by multidimensional scaling from the same

ontology and the same method of calculating similarity with hierarchical cluster analysis.

We can also find some groups from it. The groups are classified three types as follows:

1. The group of same or similar concepts. For example, the four classes enclosed by

oval A on Figure 14 are all about time.

2. The group including different concepts which have same property concept. For

example, the three classes enclosed by oval B on Figure 14 are "transfer",

"destination" and "temple" which have the transportation slot.

3. The others. Sometimes, we can find some groups in the group by zooming in. For

example, the twelve classes enclosed by oval C on Figure 14 further consists three

groups (five classes about hotel, six classes about hotel-charge and one class about

museum).

5. Summery

We discussed two systems for knowledge sharing and reuse. One is the document

browsing and organizing system. The other is the ontology browsing and integration

supporting system. Both of systems aim to share personal knowledge among users.

We show the Designers Amplifier can organize the poorly-structured engineering

information since mixture of media and formalized representation can facilitate deep-

understanding among users. We show Donden can manage multiple ontologies among

users and help to integrate them by calculating similarity of concepts.

 We are going to integrate the two system and apply to real and larger engineering

domains to know how it can contribute knowledge organization.

References

[1] Flew, A.(editor) A Dictionary of Philosophy, Pan Books, 1979.

[2] Gruber, T.R. Toward principles for the design of ontologies used for knowledge

sharing. Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford

University, August 1993.

[3] Cutkosky, M.R. Engelmore, R.S. Fikes, R.E. Genesereth, M.R. Gruber, T.R.

Mark, W.S. Tenenbaum, J.M. and Weber, J.C. PACT: An experiment in integrating

concurrent engineering systems. IEEE Computer, 1993; January: 28—38.

[4] Farquhar, A. Fikes, R.E. Pratt, W. and Rice, J. Collarborative ontology

construction for information integration. Technical Report KSL 95-63, Knowledge

Systems Laboratory, Stanford University, 1995.

[5] Fraser, J. and Tate, A. The enterprise tool set—an open enterprise architecture.

In Proc. IJCAI’96 Workshop on Intelligent Manufacturi ng Systems, 1995.

[6] Gruber, T.R. Ontolingua: A mechanism to support portable ontologies. Technical

Report KSL 91-66, Stanford University, Knowledge Systems Laboratory, 1992.

[7] Takeda, H. Yoshioka, M. Tomiyama, T. and Simomura, Y. Analysis of design

processes by functional evaluation process. Analysing Design Activity (Nigel

Cross,Henri Christaans,and Kees Dorst,editors), Chichester, John Wiley & Sons, 1995,

187—209.

[8] Takeda, H. Iino, K. and Nishida, T. Agent organization and communication with

multiple ontologies. the International Journal of Cooperative Information Systems,

1995; 4(4): 321—337.

[9] Finin, T. Weber, J. Wiederhold, G. Genesereth, M. Fritzson, R. McKay, D.

McGuire, J. Pelavin, P. Shapiro, S. and Beck, C. Specification of the KQML

agent-communication language. Technical Report EIT TR 92-04, Enterprise

Integration Technologies, 1992 (Updated July 1993).

