
Construction of a Dynamic Document Using Context-Free Pieces

Kenji Hanakawa

Department of Electrical Engineering

and Computer Science

Osaka Prefectural College of Technology

26-12 Saiwaicho, Neyagawashi 630-01, Japan

hanakawa@ecs.osaka-pct.ac.jp

Hideaki Takeda Toyoaki Nishida

Graduate School of Information Science

Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-01, Japan

ftakeda, nishidag@is.aist-nara.ac.jp

Abstract

In this paper, we propose a system for shared writ-

ing and reading of documents suitable for computer net-

work environment which is based on pieces of docu-

ments. Pieces of documents are statements about par-

ticular facts such as \The earth has a spherical surface".

In this system, writers can create document pieces and

store them into a common repository. Readers then can

select document pieces from it. However, the selected

documents are disjointed and hard to read. In order to

make them easy to understand, it is necessary to orga-

nize them according to semantic models on which hu-

man writing is based. We introduce two semantic mod-

els: Top-down Model and Context-strengthen Model.

We show how to create document pieces and how to con-

struct a document from them with these models.

1. Introduction

Information, which is mainly presented in natural
language, can be categorized into two types. One is in-
formation about only facts, such as encyclopedias, tech-
nical manuals and textbooks. The other is information
including works of �ction or subjective opinions, such
as novels, poems, tales and stories. We call the former
type \document", and study techniques for e�ective cre-
ation, storing, distribution and using it.

Usually, all documents are written for expected read-
ers by one or a small number of authors. Not only
conventional books, but also electrical web pages and
on-line manuals are written in this way. We call these
documents \static documents".

It is impossible for an author to write a document
which matches every reader's requirements because they
can be various. Readers who can not get all necessary
information from one book need to read other books.

If the author could write documents for some variety of
readers, these documents are ideal but would be expen-
sive and not practical.

Recently, a large quantity of information is required
for our activities. Systems that can supply necessary
documents e�ectively are needed. However, a sim-
ple combination of the static documents and computer
technologies is not useful because it can cause easily
redundancy and contradiction.

For instance, suppose skilled software engineers.
They usually do not read a programming reference man-
ual from the �rst page to the last page. As they already
know most part of the programming language, they only
refer to speci�c parts of the manuals. If they cannot
get all the information from a single manual, they will
read other manuals. As a result, they can get disjointed
fragments from some set of manuals. It is di�cult to
merge such fragments because they can easily contain
some statements about the same subject which contra-
dict each other.

Most information consists of facts, which are univer-
sal truths or propositions accepted by all member of the
community. \The earth has a spherical surface" is an
example of fact. Textbooks and science or technology
documents contain these facts. Writing them must be
the common task of the community. However, in the
conventional book-style authoring systems, writing is
an activity of one or a small number of authors. Com-
puting technology such as the Internet provides media
between writers and readers, but not among writers.

We have two hypotheses:

� A document consists of context-free pieces. I.e., the
pieces can be understood independently without
knowing the context.

� A document can be constructed according to syn-
tactic and semantic models, and it is then easy to
read.

Figure 1. The dynamic document system

Based on these hypotheses, we propose a dynamic
document system which consists of common repositories
and document constructors.

A dynamic document is a non-static document cre-
ated dynamically in response to readers' requirement.
Figure 1 outlines the concept of a dynamic document
and shows how the system works. Writers create docu-
ment pieces and store them into the common repository.
When a reader inputs her/his search requirements, the
system selects the relevant pieces from the repository
and constructs them into one document.

2. The dynamic document system

2.1. The common repository

The purpose of the dynamic document system is
world wide information sharing. The common repos-
itory is a large scale distributed database system which
is connected with users by network. It's similar to an
digital library, but \book" which is a basic unit in li-
braries is not used here.

The necessary conditions of the common repository
are as follows:

1. All pieces are true.

2. All pieces are context independent.

3. All pieces are unique.

If there are two or more pieces that are contradictory
to each other, the authors need to discuss to �nd out
which is true and put it in a repository.

The common repository is taken as a set of facts in
which all elements are true. Consequently all elements

of any subsets extracted from the set are true. There-
fore, when a user selects parts from the common repos-
itory by any searching technologies, all selected docu-
ment pieces are true. They are also unique, because
elements of the set are unique. A repository can be
constructed from various types of pieces. For example,
section and paragraph can be the units of a piece.

2.2. The dynamic document constructor

A user access the common repository using a client
system which inputs user's keywords and outputs a dy-
namic documents. The client system contains the dy-
namic document constructor.

The dynamic document constructor is a computer
program which constructs dynamic documents. It is
based on the basic assumption that documents writ-
ten by human beings with syntactic and semantic con-
straints are easy to read. The constructor uses mod-
els of human writing: the Top-down Model and the
Context-strengthen Model. Details of these models will
be discussed later in this paper.

3. Creation of context-free pieces

This study is based on the hypotheses that a docu-
ment consists of context-free pieces. In this section, we
discuss methods for extracting these document pieces.

Generally speaking, it is di�cult to understand the
meaning of isolated parts extracted from documents,
because the loss of neighboring parts causes the loss of
context. There are two common phenomena involved
with contexts in the technical document: referring and
ellipsis. A part of a document can include pronouns
such as \it" and \this". Usually pronouns refer to pre-
ceding words or noun phrases, and meaning of the pro-
nouns are equal to meaning of preceding words or noun
phrases. Documents include ambiguous words or noun
phrases caused by ellipsis which are disambiguated by
adding the preceding words or noun phrases.

Document pieces are generated using the following
four processes.

1. Dividing: Divide a document into parts.

2. Completion: Add or substitute words to be under-
stood independently.

3. Storing: Gather parts or paragraphs from more
than one documents and store them in one reposi-
tory.

4. Unifying: Unify parts that have the same informa-
tion.

1. Bash is the shell, or command language inter-
preter, that will appear in the GNU operating sys-
tem.

2. The name (of Bash) is an acronym for the
\Bourne-Again SHell", a pun on Steve Bourne, the
author of the direct ancestor of the current UNIX-
shell /bin/sh.

3. Bash is an sh-compatible shell that incorporates
useful features from the Korn shell and the C shell.

4. It �! Bash is ultimately intended to be a confor-
mant implementation of the IEEE POSIX Shell
and Utilities speci�cation.

Figure 2. Avoiding of context dependency

At present these processes can be done only by hu-
man beings and not by computers. However, these pro-
cesses are not tedious tasks for the original author.

We have experimented this method using a technical
manual of Bash, the GNU shell. The manual is called
\Bash's article.txt". Figure 2 is a typical example of
applying the completion process to make pieces from
the manual. In the �gure, the words in parentheses are
added words, words on the left-hand side of an arrow
are removed words, and words on the right side of an
arrow are substituted words. The subject of the sec-
ond sentence, The name, is unidenti�ed, and of Bash is
added next to it. The subject of the fourth sentence, It,
is also unidenti�ed, and Bash is substituted for It.

Substitution and adding some words or noun phrases
can preserve original meaning and make the sentence
context free. This result shows that documents can be
divide into context free document pieces.

Our study has shown that sentences in the manual
could be translated into context-free one, except pro-
gramming examples and explanations. As there are
so many reference connections between them, we could
not transform them into document pieces. However, we
could make a document piece from a group of program-
ming examples and explanations.

4. Construction of dynamic documents

Documents written by humans have contextual con-
nections between parts. On the other hand, a set of
document pieces which have no connections is hard to
understand. If a computer program constructs a docu-
ment which has the same structure of documents writ-
ten by humans, it can be easily understood. We think
that the structure is based on semantic models.

In the following sections, we will discuss two semantic
models. One is the Top-down Model, in which relation
between the former sentence and the latter sentence is

considered as one of the eight relations. This model is
used for arranging sentences in paragraphs. The other
is the Context-strengthen Model in which the relation
between the upper element and the lower element is
considered as the relation between the stronger and the
weaker context. This model is used for creating the
structure of a document. We will explain each model in
the following sections.

4.1. The Top-down Model

We have examined paragraphs and have identi�ed
the following 8 categories of connection between two
succeeding : concrete, feature, attribute, example, ele-
ment, item, association and sequence.

These categorical connections, except sequence, are
abstracted as connections between a superior concept
and an inferior concept and the former sentence is the
superior sentence. We call the constraint on these cat-
egories \Top-down Model".

We have used the following steps for arranging sen-
tences which are extracted from some paragraphs in
Bash's article.

1. divide an original paragraph into sentences.

2. identify connections between the sentences.

3. construct a tree using the connections.

4.
atten the tree structure to a list of sentences using
the Depth First Search algorithm.

We have generated some sequences of sentences and
con�rmed all of them are readable and one of them is
equal to the original paragraphs.

The document construction based on The Top-Down
Model needs ability of identi�cation of the top-down
connection between sentences. As we have not devel-
oped this ability, we can not implement the automatic
document construction.

4.2. The Context-strengthen Model

A sentence is considered the most basic unit of doc-
ument pieces. However, it is too small to manage prac-
tically. As the Top-down Model needs understanding of
natural language statements, currently it's di�cult to
make a dynamic document constructor with this model.
We propose another semantic model with which a ma-
chine can sort paragraphs and create sections, subsec-
tions, paragraphs and so on.

Documents are constructed of elements of several lev-
els, such as sections, subsections and items. Therefore,
documents are considered as tree structures where el-
ements are represented as nodes. Relations between

Table 1. Paragraphs and their concepts
subject of
paragraph

concepts included in paragraph

scanf function input with format stdio
fscanf function input with format stream
printf function output with format stdio
fprintf function output with format stream
gets function input without format stdio
fgets function input without format stream
puts function output without format stdio
fputs function output without format stream

upper level elements and lower level elements are repre-
sented as links. The meaning of \element" used here is
similar to \non-terminal symbol" on natural language
processing.

Each element has its own context. In this section, the
word \context" has a slightly di�erent meaning from the
previous sections. Context is a constraint that limits
the elements which can be put under it. Context is
also considered as the ability given by a set of concepts.
So, a context can be represented by a set of nouns (or
noun phrases) which is basically equal to the heading
of the elements. However, sometimes some of them are
omitted.

We de�ne the order relations of contexts C1, C2
which are subsets of U which consists of all the con-
cepts involved with selected document pieces.

� if C1 = C2 [fxg;
x 2 U; x =2 C2;
then C1 is stronger than C2:

� if C1 = C0 [fxg; C2 = C0 [fyg;
x 2 U; x =2 C0;
y 2 U; y =2 C0;
and y is an abstracted concept from x;
then C1 is stronger than C2:

The following rules can be found by observing real
documents. If an element E2 contain another element
E1, the context of E1 must be stronger than the context
of E2. A leaf of the tree that is a selected document
piece has context of concepts which are represented by
keywords included in them.

We will show applying the Context-strengthen Model
to a C programming textbook. When paragraphs which
explain input-output functions of C are selected, each
paragraph has a super class concept such as function

and its attribute concepts such as input, with format

and stdio as shown in Table 1. Then, elements of the
document can be created as combination of these con-
cepts. Connecting these elements according to the rule,
tree structures can be constructed.

function

stdio function stream function

stdio function
with-format

stdio function
without-format

stream function
with-format

stream function
without-format

scanf

printf

gets

puts

fscanf

fprintf

fgets

fputs

Section

Subsection

Item

Paragraph

Figure 3. An example applying the

Context-strengthen Model

Figure 3 shows an example of the tree structure.
Rectangles used in the �gure represent elements of the
document and labels represent context sets.

The document has one section function and two sub-
sections stdio function and stream function. These sub-
sections have concept sets added stdio or stream to func-
tion. By adding concepts, context of the subsections
become stronger than context of the section. The doc-
ument also has four items and eight paragraphs. The
elements of item level and paragraph level also have
stronger concepts than their superior elements.

If some elements have concept sets including unique
words, de�nition of abstract relations among these
words are needed. We use abstraction graph that con-
sist of abstraction links which are directed links repre-
senting abstraction connections. An abstraction con-
nection is a connection between an instance and a class
or between a sub-class and a super-class or between a
concept and an attribute of it.

For example, if converter is substituted for finput,
function, with formatg and formatter is substituted for
foutput, function, with formatg, we need to de�ne con-
nections of meaning of these words. Figure 4 shows
an example of abstraction graph in that function is a
super-class of both converter and formatter, with format

is attribute of both, input is an attribute of converter
and output is an attribute of formatter.

Figure 5 shows another example of tree structure.
Both of the tree structures in Figure 3 and 5 are rea-
sonable and documents based on them are easy to read.

function input output with format

converter formatter

Figure 4. An abstraction graph

function

input function output function

converter

input function
without-format

formatter

output function
without-format

scanf printfgets puts

fscanf fprintffgets fputs

Section

Subsection

Item

Paragraph

Figure 5. Another example applying the

Context-strengthen Model

5. Related work

The aim of this study is computer-aided knowledge
sharing. This theme has been researched by many re-
searchers for example see [1]. However, knowledge in
their research is machine readable knowledge. There-
fore they are represented in logical expressions. Knowl-
edge in this study is human readable and represented
in natural language.

For sharing of human readable knowledge, digital li-
braries have been developed. However, they are the
static document systems and have problems we pointed
in section 1.

A schema for stories has studied [3]. It is also based
on syntactic and semantic models. Our approach of
modeling natural language text is similar to it. How-
ever, the research with stories aims to understand mean-
ingful connections between sentences of stories. As con-
nections between sentences of documents has functions
of structuring but does not have functions of adding
meaning to sentences, we can divide it into pieces.
Our model is simpler and easier to implement than the
model for stories.

The abstraction graph uses a technique named \weak
information structure" that reduce the cost of knowl-
edge developing by allowing knowledge representing

without rigorousness. We have developed some systems
using this technique [2]. Their aim is to share informa-
tion among persons in a group. The weakness of infor-
mation structure causes
exible knowledge developing
and using by a group.

In this study, we unify two types of abstraction link:
between sub-class(instance) and super-class(class) and
between object and its attribute. Uni�ed links are also
weak structures which have lack of information. How-
ever, they are su�cient for the dynamic document con-
structor. We think the method can reduce the cost of
developing abstraction graphs.

6. Conclusion

In this paper, we proposed a dynamic document sys-
tem that can create a document dynamically and only
contains the information which a user needs. This sys-
tem will reduce the redundancy and the contradiction
that a static document has. A dynamic document sys-
tem consists of a common repository which contains
context-free document pieces. A context-free document
piece is expression in natural language which is under-
standable without context. We showed that context-
free document pieces can be made by splitting a static
document.

In order to construct a dynamic document, we pro-
posed two semantic models. The �rst models is Top-
down Model based on connection between two succeed-
ing sentences. We showed a technical document can be
constructed by eight categories of connection.

The second model is Context-strengthen Model
which considers a document as a tree structure of sec-
tions, subsections, and so on. Connected nodes of the
tree structure have relation of order of context strength.
With this model, a computer can sort paragraphs and
create sections, subsections and items.

We are implementing the Context-strengthen Model,
and will apply it to an interactive generator of HTML
textbooks which can �t various learners. Using the
system, we will con�rm documents generated with the
model are easy to read.

References

[1] R. V. Guha. Representation of defaults in Cyc. In Proc.
AAAI-90, pages 608{614, 1990.

[2] H. Maeda, M.Kajihara, H. Adachi, A. Sawada,
H. Takeda, and T. Nishida. A system for community in-
formation sharing and its evaluation at an international
conference. In Conference on Knowledge-Based Intelli-
gent Electronic Systems (KES'98), pages 405{410, 1998.

[3] D. Rumelhart. Notes on a schema for stories. In Repre-
sentation and Understanding: Studies in Cognitive Sci-
ence, pages 211{236. Academic Press, New York, 1975.

