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The consideration of rationality of Profit Sharing with roulette action selection

Hirokazu Kawai Atsushi Ueno Shoji Tatsumi

Department of Physical Electronics and Informatics, Osaka City University

In this paper, we discuss the rationality of profit sharing (PS) in reinforcement learning (RL) methods with roulette action selection. In
PS methods, received rewards are distributed among all selected rules on the way to the rewards. The volume of distribution is fixed as a
function of the distance to the rewards. For the rationality of PS methods, a theorem, the Rationality Theorem of Profit Sharing, has been
proposed, which enable RL agents to learn routes without loops. Following the theorem, however, makes the function converge to zero
very quickly and makes learning inefficient. We propose a theorem for distributing more volume to distant rules through the use of a
special feature of roulette action selection. Experimental results have shown that RL agents can learn more efficiently with it.
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