
The 19th Annual Conference of Japanese Society for Arti�cial Intelligence, 2005

2F3-03

Discovery of Closed and Maximally Frequent Tag Tree Patterns from Semistructured Documents

Tetsuhiro Miyahara�1 Takayoshi Shoudai�2 Kenichi Takahashi�1 Hiroaki Ueda�1

�1Faculty of Information Sciences, Hiroshima City University �2Department of Informatics, Kyushu University

In order to extract knowledge from semistructured documents such as HTML or XML �les, the methods for
�nding frequent patterns or common characteristics in semistructured documents have been studied extensively.
However, the number of frequent patterns grows exponentially with the size of input semistructured data. So
discovery of closed frequent patterns in semistructured data has been more and more important, since closed
patterns are known to be condensed representations of frequent patterns. We propose new closed frequent tree
structured patterns, which are called closed frequent tag tree patterns, and consider discovery of both closed and
maximally frequent tag tree patterns from semistructured documents.

1. Introduction

Due to the rapid growth of Internet usage, Web doc-

uments such as HTML or XML �les have been rapidly

increasing. Such Web documents have no rigid structure

but have heterogeneous features, and are called semistruc-

tured data. In order to extract meaningful and hidden

knowledge from such semistructured documents, methods

for discovering frequent patterns or common characteristics

in semistructured documents have been studied extensively.

However, the number of frequent patterns grows expo-

nentially with the size of input semistructured data. So

discovery of closed frequent patterns in semistructured data

has been more and more important, since closed patterns

are known to be condensed representations of frequent pat-

terns. In this paper, we propose new closed frequent tree

structured patterns, which are called closed frequent tag

tree patterns, and consider discovery of both closed and

maximally frequent tag tree patterns from semistructured

documents.

We use rooted trees as representations of semistructured

data such as HTML or XML �les, according to Object Ex-

change Model [1]. In this paper, \ordered" means \with

ordered children" and \unordered" means \with unordered

children". We consider both ordered trees and unordered

trees in order to deal with various semistructured data.

To formulate a schema on such tree structured data we

have proposed a tag tree pattern [5]. A tag tree pattern

is an edge labeled tree which has ordered or unordered chil-

dren and structured variables. An edge label is a tag, a

keyword in Web documents, or a wildcard for any string. A

variable can match an arbitrary subtree, which represents a

�eld of a semistructured document. In the examples of tree

structured data and tag tree patterns in Fig.1, the variables

with labels \x1", \x2" and \x3"of the tag tree pattern t2
match the subtrees g1,g2 and g3, respectively. Thus the tag

tree pattern t2 matches the tree T1.

Graph or tree-based data mining and discovery of closed

frequent patterns have been extensively studied [2, 3, 6,

7, 8]. But almost all previous works on closed patterns

deal with itemsets, subgraphs, substructures, subtrees, or

subsequences. In order to apply our method to knowledge

Contact: Email:miyahara@its.hiroshima-cu.ac.jp

discovery from heterogeneous semistructured Web docu-

ments, our target of discovery is a closed frequent tag

tree patterns, which is a condensed representation of a

common characteristic in semistructured documents. A tag

tree pattern is di�erent from other representations of tree

structured patterns in that a tag tree pattern has struc-

tured variables which can match arbitrary trees and a tag

tree pattern represents not a substructure but a whole tree

structure.

Let D be a set of semistructured data (or trees) and �

a threshold, which is called a minimum support. The fre-

quency of a tag tree pattern � is the ratio of the data which

� matches to all data in D: A tag tree pattern � is frequent

if the frequency of � is greater than or equal to �. A re-

�nement of � is a tag tree pattern which is a specialized

pattern of � and obtained by adding a vertex to � or by

attaching a new edge label to a variable or wildcard of �.

A tag tree pattern � is closed if for every re�nement �0 of

�, the frequency of �0 is less than the frequency of �. A

frequent tag tree pattern � is maximally frequent if for every

re�nement �0 of �, the frequency of �0 is less than �.

In this paper, we consider the following data mining prob-

lems. CFOTTP (resp. CFUTTP) is a problem to gen-

erate all Closed Frequent Ordered (resp. Unordered) Tag

Tree Patterns with frequency above a user-speci�ed thresh-

old from a given set of ordered (resp. unordered) semistruc-

tured data. Consider the examples in Fig. 1. For a set of

semistructured data fT1; T2; T3g, the tag tree pattern t2 is

a closed 2
3
-frequent ordered tag tree pattern. In fact, t2

explains T1 and T3, but t2 does not explain T2. The tag

tree pattern t1 also explains T1 and T3. But t1 explains any

tree with two or more vertices and t1 is overgeneralized and

meaningless.

In our previous work [5], we proposed methods for gener-

ating all maximally frequent ordered or unordered tag tree

patterns. Chi et al. [3] gave an algorithm for enumer-

ating closed and maximally frequent subtrees in a set of

unordered trees. Their pattern and data trees are di�erent

from our pattern and data trees in this work.

2. Preliminaries

De�nition 1 (Ordered term trees and unordered

term trees) Let T = (VT ; ET) be a rooted tree with or-

1

The 19th Annual Conference of Japanese Society for Arti�cial Intelligence, 2005

Sec1 Sec2 Sec3

Experiment
Comment

Sec4

Introduction Conclusion

Result I

Notations

x
u2

w2

SubSec3.1

T1 T2 t1 g2

486+ 486, 486-

0C>8?9;8<A
/=;;8<A

486.

1<A?=7B6A9=< /=<6:B@9=<

38@B:A 1

2?8:9;9<5?D

/=;;8<A
Sec1 Sec4

Result I

ConclusionIntroduction

x1

x2 x3Preliminary

Sec3 Sec2

SubSec2.1
SubSec2.2

Preliminary II

u1

w1

SubSec3.2

Result II

u3

w3

T3 t2 g1 g3

Figure 1: Tag tree patterns t1, t2, and trees T1, T2, T3, g1, g2, g2. A variable is represented by a single lined box with lines

to its elements. The label inside a box is the variable label of the variable.

dered children or unordered children, which has a set VT of

vertices and a set ET of edges. We call a rooted tree with

ordered (resp. unordered) children an ordered tree (resp.

an unordered tree). Let Eg and Hg be a partition of ET ,

i.e., Eg [Hg = ET and Eg \Hg = ;. And let Vg = VT . A

triplet g = (Vg; Eg; Hg) is called an ordered term tree if

T is an ordered tree, and called an unordered term tree

if T is an unordered tree. We call an element in Vg, Eg and

Hg a vertex , an edge and a variable, respectively.

Below we say a term tree or a tag tree pattern if we do

not have to distinguish between \ordered" and \unordered"

ones. We assume that all variable labels in a term tree are

di�erent. � and X denote a set of edge labels and a set

of variable labels, respectively, where � \ X = �. We use

a notation [v; v0] to represent a variable fv; v0g 2 Hg such

that v is the parent of v0. Then we call v the parent port of

[v; v0] and v0 the child port of [v; v0].

For an ordered term tree g, all children of every internal

vertex u in g have a total ordering on all children of u. The

ordering on the children of u of an ordered term tree g is

denoted by <gu. Let f = (Vf ; Ef ; Hf) and g = (Vg; Eg; Hg)

be two ordered (resp. unordered) term trees. We say that

f and g are isomorphic, if there is a bijection ' from Vf
to Vg which satis�es the following conditions (1){(4) (resp.

(1){(3)): (1) The root of f is mapped to the root of g by

'. (2) fu; vg 2 Ef if and only if f'(u); '(v)g 2 Eg and the

two edges have the same edge label. (3) [u; v] 2 Hf if and

only if ['(u); '(v)] 2 Hg. (4) If f and g are ordered term

trees, for any internal vertex u in f which has more than

one child, and for any two children u0 and u00 of u, u0 <fu u
00

if and only if '(u0) <g
'(u)

'(u00).

Let g be a term tree which has at least two vertices and

x be a variable label in X. Let � = [u; u0] be a list of two

vertices in g where u is the root of g and u0 is a leaf of g. The

form x := [g; �] is called a binding for x. Let f and g be two

ordered (resp. unordered) term trees. A new ordered (resp.

unordered) term tree ffx := [g; �]g is obtained by applying

the binding x := [g; �] to f in the following way. Let e =

[v; v0] be a variable in f with the variable label x. Let g0

be one copy of g and w;w0 the vertices of g0 corresponding

to u; u0 of g, respectively. For the variable e = [v; v0], we

attach g0 to f by removing the variable e from Hf and

by identifying the vertices v; v0 with the vertices w; w0 of

g0, respectively. A substitution � is a �nite collection of

bindings fx1 := [g1; �1]; � � � ; xn := [gn; �n]g, where xi's are

mutually distinct variable labels in X and gi's are term

trees. The term tree f�, called the instance of f by �, is

obtained by applying the all bindings xi := [gi; �i] on f

simultaneously. We de�ne the root of the resulting term

tree f� as the root of f . Further we have to give a new

total ordering <f�v on every vertex v of f�. These orderings

are de�ned in a natural way [4].

Example. Let t2 be a term tree described in Fig. 1. Let � =

fx1 := [g1; [u1; w1]]; x2 := [g2; [u2; w2]]; x3 := [g3; [u3; w3]]g

be a substitution, where g1, g2 and g3 are trees in Fig. 1.

Then the instance t2� of the term tree t2 by � is the tree

T1.

De�nition 2 Let �Tag and �KW be two languages which

consist of in�nitely or �nitely many words where �Tag \

�KW = ;. Let � = �Tag [�KW . We call a word in

�Tag a tag and a word in �KW a keyword. An ordered

(resp. unordered) tag tree pattern is an ordered (resp.

unordered) term tree such that each edge label on it is any

of a tag, a keyword, and a special symbol \?". Let �? be a

subset of �. The symbol \?" is a wildcard which matches

any word in �?. A tag tree pattern with no variable is called

a ground tag tree pattern.

For an edge fv; v0g of a tag tree pattern and an edge

fu; u0g of a tree, we say that fv; v0g matches fu; u0g if the

following conditions (1)-(3) hold: (1) If the edge label of

fv; v0g is a tag, then the edge label of fu; u0g is the same tag

or another tag which is considered to be identical with the

tag on fv; v0g. (2) If the edge label of fv; v0g is a keyword,

then the edge label of fu; u0g is a keyword and the label of

fv; v0g appears as a substring in the edge label of fu; u0g.

(3) If the edge label of fv; v0g is \?", then the edge label

of fu; u0g is in �?. A ground ordered (resp. unordered)

2

The 19th Annual Conference of Japanese Society for Arti�cial Intelligence, 2005

tag tree pattern � = (V�; E�; ;) matches an ordered (resp.

unordered) tree T = (VT ; ET) if there exists a bijection '

from V� to VT which satis�es the following conditions (1){

(4) (resp. (1){(3)): (1) The root of � is mapped to the root

of T by '. (2) fv; v0g 2 E� if and only if f'(v); '(v
0)g 2 ET .

(3) For all fv; v0g 2 E�, fv; v
0g matches f'(v); '(v0)g. (4)

If � and T are ordered, for any internal vertex u in � which

has more than one child, and for any two children u0 and u00

of u, u0 <�u u
00 if and only if '(u0) <T'(u) '(u

00). A tag tree

pattern � matches a tree T if there exists a substitution �

such that �� is a ground tag tree pattern and �� matches

T .

OT � (resp. UT �) denotes the set of all ordered (resp.

unordered) trees whose edge labels are in �. OTTP� (resp.

UTTP�) denotes the set of all ordered (resp. unordered)

tag tree patterns whose tags and keywords are in �. For �

in OTTP� (resp. UTTP�), the language L�(�) is de�ned as

fa tree T in OT � j � matches Tg (resp. fa tree T in UT � j

� matches Tg).

3. Closed Frequent Ordered Tag Tree

Patterns

A set of ordered semistructured data D = fT1; T2; : : : ; Tmg

is a subset of OT �. Let �D be the set of all edge labels

of trees in D. The matching count of an ordered tag tree

pattern � w.r.t. D, denoted by matchD(�), is the number

of ordered trees Ti 2 D (1 � i � m) such that � matches

Ti.

De�nition 3 The frequency of an ordered tag tree pat-

tern � w.r.t. D is de�ned by suppD(�) = matchD(�)=m.

Let � be a real number where 0 < � � 1. An ordered tag

tree pattern � is �-frequent w.r.t. D if suppD(�) � �.

We assume that �D � �? � � where � = �Tag [�KW
and �Tag \ �KW = ;. Let Tag and KW be �nite subsets

of �Tag and �KW , respectively, and �0 = Tag[KW [f?g.

We denote by OTTP�(�
0) the set of all ordered tag tree

patterns � 2 OTTP� such that all edge labels of � are in

�0. For an edge e of a tag tree pattern � and an edge label

� 2 �, when e is labeled with �, e is said to be a �-labeled

edge, and in particular, when e is labeled with \?", e is said

to be a wildcard edge.

De�nition 4 An ordered tag tree pattern � in OTTP�(�
0)

ismaximally �-frequent w.r.t. D [5] if (1) � is �-frequent

w.r.t. D, and (2) for any �0 2 OTTP�(�
0), if L�(�

0) �
/

L�(�) then �0 is not �-frequent. In particular, we say that

an ordered tag tree pattern � in OTTP�(�
0) is maximal

w.r.t. D if � is maximally 1-frequent w.r.t. D.

For D0 � D and � 2 OTTP�(�
0), we de�ne the fol-

lowing two functions itm�0 : 2D ! 2OTTP�(�
0) and tidD:

OTTP�(�
0)! 2D.

itm�0(D
0) = f� 2 OTTP�(�

0) j

� is maximal w.r.t. D0g;

tidD(�) = fT 2 D j � matches Tg:

De�nition 5 An ordered tag tree pattern � 2 OTTP�(�
0)

is closed w.r.t. D if � 2 itm�0(tidD(�)).

Next we de�ne the following �ve re�nement operators

for OTTP�. A re�nement operator is a substitution which

contains only one binding of a tree of size at most 3. Let

�X(x) := fx := [TX ; [RX ; LX]]g, where X 2 fA;B;Cg and

TA, TB, and TC are the following trees.

TA TB TC

Variable-extension re�nement operators for a variable label

x:

(1) �A(x), (2) �B(x), (3) �C(x).

Wildcard-replacing re�nement operator for a variable h:

(4) Replace the variable h with a wildcard edge.

Edge-labeling re�nement operator for a wildcard edge e and

� 2 �0:

(5) Replace the wildcard edge e with a �-labeled edge.

For any � 2 OTTP�(�
0), the set R�0(�) is de�ned as the

set of all ordered tag tree patterns which are obtained from

� by applying one of the above 5 re�nement operators only

once to either a variable or a wildcard edge of �. An ordered

tag tree pattern in R�0(�) is called a one-step re�nement

of �. For i = 1; 2; : : :, let R
(0)

�0 (�) = f�g and R
(i)

�0 (�) =S
�02R

(i�1)

�0
(�)

R�0(�
0). Then we de�ne the re
exive and

transitive closure of R�0(�) as R
�
�0(�) =

S1

i=0
R
(i)

�0
(�).

Proposition 1 For � 2 OTTP�(�
0), if �0 2 R�0(�) then

tidD(�
0) � tidD(�).

Lemma 1 We assume that Tag [KW �
/

�? �/ �. For

�0; � 2 OTTP�(�
0), L�(�

0) � L�(�) if and only if �0 2

R��0(�).

Lemma 2 We assume that Tag [KW �
/

�? �/ �. For

any � 2 OTTP�(�
0), � is closed w.r.t. D if and only if

there does not exist �0 2 OTTP�(�
0) such that �0 2 R�0(�)

and suppD(�
0) = suppD(�).

Next we de�ne formally the problem of generating all

closed ordered tag tree patterns.

All Closed Frequent Ordered Tag Tree Patterns

(CFOTTP)

Input: A set of ordered semistructured data D, a threshold

0 < � � 1, and a �nite set of tags Tag and a �nite set of

keywords KW .

Assumption: Tag [KW �
/

�? �/ �.

Problem: Generate all closed �-frequent ordered tag tree

patterns w.r.t. D in OTTP�(Tag [KW [f?g).

By using Lemma 2 and the method for generating all

maximally frequent ordered tag tree patterns [5], we can

give a method for generating both closed and maximally

frequent ordered tag tree patterns.

3

The 19th Annual Conference of Japanese Society for Arti�cial Intelligence, 2005

4. Closed Frequent Unordered Tag

Tree Patterns

In Section 3., we discussed closed ordered tag tree pat-

terns. In a similar way, we can de�ne closed unordered tag

tree patterns.

A set of unordered semistructured data D =

fT1; T2; : : : ; Tmg is a subset of UT �. Let �D be the set of

all edge labels of trees in D. We assume that �D �
/

�? � �

where � = �Tag [�KW and �Tag \ �KW = ;. Let Tag

and KW be �nite subsets of �Tag and �KW , respectively,

and �0 = Tag [KW [f?g. We denote by UTTP�(�
0) the

set of all unordered tag tree patterns � 2 UTTP� such

that all edge labels of � are in �0. In the same way as in

Section 3., we can de�ne itm�0 and tidD.

De�nition 6 An unordered tag tree pattern � 2

UTTP�(�
0) is closed w.r.t. D if � 2 itm�0(tidD(�)).

We de�ne the following four re�nement operators for

UTTP�. Let �X(x) := fx := [TX ; [RX ; LX]]g, where

X 2 fA;Bg and TA and TB are the following trees.

TA TB

Variable-extension re�nement operators for a variable label

x:

(1) �A(x), (2) �B(x).

Wildcard-replacing re�nement operator for a variable h:

(3) Replace the variable h with a wildcard edge.

Edge-labeling re�nement operator for a wildcard edge e and

� 2 �0:

(4) Replace the wildcard edge e with a �-labeled edge.

Lemma 3 We assume that Tag [KW �
/

�? �/ �. For

�0; � 2 UTTP�(�
0), L�(�

0) � L�(�) if and only if �0 2

R��0(�).

Lemma 4 We assume that Tag [KW �
/

�? �/ �. For

any � 2 UTTP�(�
0), � is closed w.r.t. D if and only if

there does not exist �0 2 UTTP�(�
0) such that �0 2 R�0(�)

and suppD(�
0) = suppD(�).

Next we de�ne formally the problem of �nding all closed

unordered tag tree patterns.

All Closed Frequent Unordered Tag Tree Patterns

(CFUTTP)

Input: A set of unordered semistructured data D, a thresh-

old 0 < � � 1, and a �nite set of tags Tag and a �nite set

of keywords KW . b

Assumption: Tag [KW �
/

�? �/ �.

Problem: Generate all closed �-frequent unordered tag

tree patterns w.r.t. D in UTTP�(Tag [KW [f?g).

By using Lemma 4 and the method for generating all

maximally frequent unordered tag tree patterns [5], we can

give a method for generating both closed and maximally

frequent unordered tag tree patterns.

5. Experimental Results

We have implemented the method in Section 3., which

generates all closed �-frequent ordered tag tree patterns

and all maximally �-frequent ordered tag tree patterns from

semistructured data. The implementation is by GCL2.2

and on a Sun workstation Blade1000 with clock 900MHz.

We report some experimental results. In these experiments,

an input tree represents a subtree of a parsed tree of an

HTML �le. The tree structure and HTML tags in a parsed

tree are preserved in the corresponding input tree. At-

tributes and their values are ignored. No equality rela-

tion on tags is assumed. All string data in a parsed tree

are converted to the same dummy keyword, in order to

pay attention to structures of tags in a parsed tree. In

these experiments, the sample HTML �le is a result of a

search engine of a web site with a local search function

(http://www.ael.org).

These experiments show that the number of frequent tag

tree patterns grows exponentially with the size of input

semistructured data. In the case of tag tree patterns, the

constraint of closed frequentness is strong. So the number

of closed frequent tag tree patterns is slightly larger than

that of maximally frequent tag tree patterns. Then, we can

conclude that closed tag tree patterns are useful and con-

densed representations of frequent tree structured patterns

in semistructured documents.

6. Conclusion

In this paper, we have proposed new closed frequent tree

structured patterns, which are called closed frequent tag

tree patterns, and have considered discovery of both closed

and maximally frequent tag tree patterns from semistruc-

tured documents.

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufmann, 2000.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and
S. Arikawa. EÆcient substructure discovery from large semi-
structured data. Proc. 2nd SIAM Int. Conf. Data Mining
(SDM-2002), pages 158{174, 2002.

[3] Y. Chi, Y. Yang, Y. Xia, and R. Muntz. CMTreeMiner: Mining
both closed and maximal frequent subtrees. Proc. PAKDD-2004,
Springer-Verlag, LNAI 3056, pages 63{73, 2004.

[4] T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Taka-
hashi, and H. Ueda. Discovery of frequent tag tree patterns in
semistructured web documents. Proc. PAKDD-2002, Springer-
Verlag, LNAI 2336, pages 341{355, 2002.

[5] T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Takahashi,
and H. Ueda. Discovery of maximally frequent tag tree pat-
terns with contractible variables from semistructured documents.
Proc. PAKDD-2004, Springer-Verlag, LNAI 3056, pages 133{
134, 2004.

[6] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. Proc. ICDT-1999,
pages 398{416, 1999.

[7] T. Uno, T. Asai, Y. Uchida, and H. Arimura. An eÆcient algo-
rithm for enumerating closed patterns in transaction databases.
Proc. DS-2004, Springer-Verlag, LNAI 3245, pages 16{31,
2004.

[8] T. Washio and H. Motoda. State of the art of graph-based data
mining. SIGKDD Explorations, 5:59{68, 2003.

4

