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Solving Satisfiability problem by parallel execution of neural network
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We have proposed a neural network named Langrage programming neural network with polarized high-order connections (LPPH) for
solving the SAT, together with parallel execution of LPPHSs to increase efficiency. Experimental results demonstrate a high speedup ratio
using this parallel execution of LPPHSs. Furthermore, it is easy to realize by hardware. LPPH dynamics has an important parameter named
attenuation coefficient which strongly affects L PPH execution speed. For parallel execution of LPPHS, it isimportant to increase diversity
of the set of LPPHs. We have proposed a method in which LPPHs have mutuadly different attenuation coefficients generated by a
probabilistic generating function. Experimental results show the efficiency of this method. We also have proposed a LPPH dynamics with
abias. In this paper, to increase the diversity we propose a parallel execution in which LPPHs have mutually different kinds of biases, e.g.,
abiastoward 1 (positive bias), a bias toward O (negative bias), and a bias toward 0.5 (centripetal bias). For some problems, a positive bias
has advantage if percentage of 1sishigh in a solution, and negative bias if percentage of Osis high. However the speed of the dynamics of
LPPH does not completely depend on the percentage of 1sor Os. So it is difficult to decide which bias is better before solving a problem.

In this paper, we introduce mixed biases to parallel execution of LPPHs. Experimental results show the efficiency of the method.
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coef _bias:  strengthof bias
coef _cb: strength of centripetd bias.
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