
Extensible Framework of Authoring Tools for Web Document Annotation

Masahiro Hori , Mari Abe , and Kouichi Ono
IBM Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato-shi
Kanagawa-ken, 242-8502, Japan

{horim, maria, onono }@jp.ibm.com

Abstract

Web metadata is crucial for providing machine-
understandable descriptions of Web resources, and
has a number of applications such as discovery, qual-
ification, and adaptation of Web documents. While
metadata is often embedded into a target document,
metadata can also be associated externally by means
of an addressing scheme such as the XPath language.
However, creation and modification of external meta-
data solely with a conventional editor is not easy be-
cause metadata authoring involves the maintenance
and elaboration of addressing expressions as well as
editing individual documents. The objective of this
study is to advance extensibility and variations in the
configuration of annotation tools, taking account of
different authoring methods as well as the different
roles of annotations for assertion and transformation.

1 Introduction
Web metadata is crucial for providing machine-
understandable descriptions of Web resources, and
has a number of applications such as discovery, qualifi-
cation, and adaptation of Web documents [14]. A remark
attached to a particular portion of a document is called
an annotation, and covers a broad range in the literature.
Forms of annotations can be characterized by the dimen-
sions: whether formal or informal, and whether tacit or
explicit [16]. Metadata that follows structural specification
resides at the most formal and explicit extreme. In this
paperannotation andmetadataare used interchangeably
in this restricted sense.

While metadata is often embedded into a target docu-
ment, metadata can also be associated externally by means
of an addressing scheme such as the XPath language [22].
However, creation and modification of external metadata
solely with a conventional editor is not easy because meta-
data authoring involves the maintenance and elaboration of
addressing expressions as well as editing individual doc-
uments. Configurations of annotation tools depend on
the annotation scenario. Browser-based annotation tools
[3, 7, 17] are desirable when annotators are not allowed
to edit target documents without document ownership. On
the other hand, an annotation tool based on a WYSIWYG

editor [9] is helpful when annotators are responsible not
only for the creation of the annotations but also for the
editing of the target documents. Regardless of the variety
of emerging annotation tools, a significant limitation of the
current annotation tools is the lack of extensibility, because
the existing tools are developed solely for a particular an-
notation vocabulary, and provided with predefined views
for the authoring.

In pursuit of Web content adaptation, we have been
working for the development of an annotation-based page-
clipping system [8, 9, 11], annotation authoring tools
[1, 10, 13, 18], and empirical evaluation for the robust-
ness of external annotations [2]. In particular, the page-
clipping engine and clipping annotation tools are commer-
cially available as software products of transcoding proxy
[20] and portal server [4].

In this paper, we propose a comprehensive framework
of authoring tools for Web document annotation. In partic-
ular, the extensibility of tool configuration is investigated
on the basis of two authoring methods (annotation by se-
lection and by example) as well as the different roles of
annotations for assertion and transformation. In the next
section, we explain a schema for external annotation which
is specified as an XML Information Set [21]. Section 3 in-
troduces an extensible framework of annotation authoring
tools, and shows the three of typical tool configurations.
Finally, we present practical applications of external anno-
tations for Web document clipping, and show how annota-
tion tools are used for annotation authoring.

2 XML Information Set of Annotation Doc-
ument

The framework of external annotation prescribes a scheme
for representing annotation files and a way of associating
original documents with external annotations [9]. The ba-
sic ideas behind this framework are twofold. One is that
it should not be introduced new elements or attributes into
the document type definitions of the target documents to be
annotated. The other is that annotations need to be created
for arbitrary parts of annotated documents.

External annotation files contain metadata that refers to
a part of a document to be annotated. XPath [22] is used to

infs:I nfo I tem

infs:D o c um ent
infs:E l em ent

rd f:Pro p erty
infs:Attribute

rd f:Pro p erty

infs:Parent

o w nerAnno tatio nD o c um ent

D esc rip tio nE l em ent

o w nerD esc rip tio n

XPathAttribute

Nodes with bold outlines are instances of rdfs:Class.

infs:o w nerE l em ent

s = rdfs:subClassOf
sp = rdfs:subPropertyOf
d = rdfs:domain
r = rdfs:range

s

s

s s

s

s s

sp

sp d
r dr

dr

Figure 1: RDF schema for an annotation document infoset

associate annotated portions of a document with annotat-
ing descriptions. An external annotation document refers
to portions of an annotated document. A reference may
point to a single element (e.g., anIMGelement), or a range
of elements (e.g., anH2 element and the following para-
graphs). For example,/HTML/BODY/P[3] points to the
third P element of theBODYelement of the annotated doc-
ument. If a target element has an id attribute, the attribute
can be used for direct addressing without the need for a
long path expression.

One annotation vocabulary would not fit for all the re-
quirements of metadata representation. Moreover, it is
also impractical to expect to provide a common basis for a
generic portion covering all annotation vocabularies. This
difficulty comes from the approach of defining document
type specifications based on the grammatical aspects of
specific vocabularies, because the same contents may be
described with different grammars. Therefore, in order to
clarify the edit-time constraints, it is important to charac-
terize a class of annotation documents, without regard to
rigorous grammatical definitions.

Information available from an XML document can be
specified as an abstract data called XML Information Set
(Infoset) [21]. Figure 1 shows a RDF schema [19] of the
annotation document infoset. Features of the annotation
document infoset are described as follows. Note that terms
in bold face indicate information items, and the terms in
italic are items specific to the annotation information set.

• A description elementis anelementitem.

• An XPath attributeis anattribute item, and may take
an XPath expression as its value.

• An XPath attributeis owned by adescription element
(owner descriptionproperty).

• Theparent of adescription elementis adocumentitem
(owner annotation documentproperty).

Table 1: Variations in annotation tool design

Authoring methods

R ol es of
a nnota tion

By example

T r an s f o r mat i o n

A s s er t i o n

By s elec t i o n

(a)

(b) (c)

N/A

The annotation document infoset mentioned above pro-
vides constraints on the structure of annotation documents,
and exploited as edit-time constraints to be satisfied by an-
notation tools. The annotation tool framework presented
in the next section incorporates the specifications of the
annotation information set into an annotation profile.

3 Framework of Annotation Tools
An annotation in general declares properties that qualify a
particular portion of a target document. Moreover, anno-
tations may indicate structural changes for the annotated
portion of a target document. In order to clarify the dis-
tinction of these two roles, the former can be calledasser-
tional annotations, while the lattertransformational anno-
tations[10]. It is important to note that this distinction is
not exclusive, because every annotation is intrinsically an
assertion.

It is straightforward for annotation authors to indicate
a location to be annotated and create an assertion as an-
notation content. This is an approach that we callanno-
tation by selection, and is adopted by existing annotation
tools [1, 3, 7, 9, 12, 17]. On the other hand, for transfor-
mational annotations, it is easier for the authors to modify
a target document toward the desired results of the cus-
tomization, rather than to indicate the ways of modifica-
tions declaratively as assertional annotations. This is a ba-
sic idea behind an approach what we callannotation by
example, which was originally proposed for the automatic
generation of document transformation rules [13] and also
applied for automatic generation of transformational an-
notations on the basis of users’ editing operations for the
content customization [10].

According to the distinctions of annotation authoring
methods and roles of annotation, Table 1 summarizes vari-
ations in annotation tools. It is straightforward for anno-
tation authors to select a portion of document to be an-
notated and declare properties on the selected portion as
assertional annotation. This type of annotation tools sup-
port assertional annotation by selection [Table 1(a)]. Even
when annotations are used for structural changes of a tar-
get document, it is possible for authors to create transfor-
mational annotations by selecting portions to be changed
and declare instructions of transformations as annotations.
This type of annotation tools support transformational an-
notation by selection [Table 1(b)].

In order to create transformational annotations, however,
annotation authoring by example would be much easier

Target
D o c u m en t

A n n o tati o n
D o c u m en t

A n n o tati o n To o l
F ram ew o rk C o re

Tran s f o rm ati o n al
A n n o tati o n
b y E x am p l e

A s s erti o n al
A n n o tati o n
b y S el ec ti o n

Tran s f o rm ati o n al
A n n o tati o n
b y S el ec ti o n

Figure 2: Overview of annotation tool framework

for users, because users can work with a concrete exam-
ple and create a desired result interactively with the ex-
ample. In particular, the example-based method allows
users to automatically generate transformational annota-
tions on the basis of users’ operations conducted to come
up with a desired result. This type of annotation tools fol-
lows transformational annotation by example [Table 1(c)].
This example-based method is particularly useful for the
transformational annotations, but would not make sense for
assertional annotations, because it is not intuitive for users
to indicate assertional annotations as results of structural
changes of a target document to be annotated.

Figure 2 shows an overview of annotation tool frame-
work, which realizes the three configuration of annotation
tools explained above. The core part of this framework is
independent of any particular views and editors, and pre-
scribes the internal document models [6] and their relations
common to all the annotation tool configurations. It is as-
sumed here that the creation of an annotation document is a
primary task of users, and the users are not allowed to mod-
ify a target document as well as the annotation document.
The important point here is that the constraints imposed on
the core part come from the annotation document infoset,
and make the tool framework extensible allowing addition
of authoring capabilities as needed. In the remainder of
this section, the assertional annotation by selection and the
transformational annotation by example are explained re-
spectively in Sections 3.1 and 3.2. The transformational
annotation by selection is explained in Section 4.2 together
with an application to document clipping for portal pages.

3.1 Assertional Annotation by Selection

Figure 3 shows a tool configuration for the assertional an-
notation by selection. In addition to the core components,
this configuration includes an XPath composer with a tar-
get document viewer [Figure 3(a)], and an annotation doc-
ument editor [Figure 3(b)]. The annotation document ed-
itor is provided with an annotation profile, which allows
customization of the editor for different annotation vocabu-
laries. In addition, since the edit-time representation of ex-
ternal annotations can be saved as an inline annotation file,
this tool configuration can be given with a component for
importing annotations into a target document [Figure 3(c)].

Inline
A nno t a t i o n

Annotation
P r of il e

T ar g e t
D oc u m e nt
V ie w e r

Core
Components

(c) Conversion to Inline Annotation

(a) Creation of XPath attribute

(b) Creation of description element

T a r g et
D o c u m ent

X P a t h
C o m p o s er

A nno t a t io n
D o c u m ent
E d i t o r

Annotation
I m p or te r

A nno t a t i o n
D o c u m ent

Figure 3: Tool configuration for assertional annotation by
selection

Figure 4 shows a screen copy of an annotation tool,
which is developed for the assertional annotation by se-
lection. The main window is divided into two panels. The
left pane is the area for the target document viewer, and
also contains a target view and a source view in the tabbed
pane. The right pane is for the annotation document editor
containing a tree view. When the target is an HTML doc-
ument, users can employ the browser view. The browser
view is not embedded in the split pane because it is often
helpful for users to compare the selection between the tar-
get tree view and the browser view.

The annotation tool shown in Figure 4 can be cus-
tomized for different annotation vocabularies by selecting
one of the annotation profiles. Figure 5 shows the pro-
file selection dialog. When a profile is selected from the
pull-down list, the dialog shows the definition of the cur-
rent profile. An annotation profile, which is depicted in
Figure 3(b), includes the location of a DTD file, an an-
notation file type, the location of a data directory, and the
names of the information items shown in Figure 1. In the
figure, the ”EML Sample Annotation” profile is selected,
and the annotation documents are characterized in terms
of the root element nameannot , the annotation descrip-
tion namedescription , and the XPath attribute name
target . The annotation editor assumes that atarget
attribute is owned by adescriptions element that is
an immediate child of the root element (see Figure 1).

According to the annotation document infoset, an an-
notation document consists of description elements. Ev-
ery description element must be given with an XPath at-
tribute and annotation contents. The annotation tool in Fig-
ure 4 provides an XPath composer. The key idea under-
lying the XPath composer is to improve flexibility of the
creation of XPath expressions with a seamless integration
of three authoring methods: automatic instantaneous cre-
ation, context-constrained creation, and manual creation.
Further details of the XPath composer are reported in an-
other article [1].

Target
D o c u m en t V i ew er

Target
D o c u m en t V i ew er

A n n o tati o n
D o c u m en t E d i to r

A n n o tati o n
D o c u m en t E d i to r

P o p u p X P ath
m en u

P o p u p X P ath
m en u

H TM L B ro w s er V i ewH TM L B ro w s er V i ewA n n o tated D o c u m en t N o d e G rap hA n n o tated D o c u m en t N o d e G rap h

Figure 4: Screen copy of a tool for assertional annotation by selection

Figure 5: Dialog for selecting an annotation profile

In addition to XPath composition, it is necessary for an-
notation authoring to create the contents of the descrip-
tion item. This part of authoring relies on a DTD given
with a corresponding annotation profile (Figure 5). The
contents of the description item can be edited in the same
manner as with a DTD-based structure editor on a DOM-
tree view. When a description node is selected in the an-
notation tree view, a popup menu can be brought up by
clicking the right mouse button as shown in Figure 6. The
first popup menu is common to all annotation vocabular-
ies, and provides menu items to add/remove an element,
add/remove an attribute, and edit an attribute value. The
second-level menus are derived from the DTD informa-
tion of the current profile. Figure 6 shows a popup menu
that appears after choosing the ”Add the first child ele-
ment” item, and the valid elements such asimportance ,
date , andauthor are given as candidates for the inser-
tion as a child of the description node. When the user
chooses the ”author” item, a dialog appears with an edit
field for typing the text content, namely, an author name.

3.2 Transformational Annotation by Example

Transformational annotation has been used for Web con-
tent adaptation, in which structural changes of a target doc-
ument are needed [9, 17, 20, 23]. Among those annotation
languages, XSL Transformation Language (XSLT) [23] is
well-known, and the document type definition of XSLT is
actually compliant with the constraints of annotation docu-

Figure 6: Popup menu for editing an annotation description

ment infoset explained in the previous section. In contrast
to assertional metadata such as Dublin Core Metadata [5],
transformational annotation languages are more like pro-
gramming languages. Learning an abstract language and
writing programs are not easy tasks for most people. How-
ever, if a person knows how to perform a task to be exe-
cuted by a computer, perhaps the person’s knowledge can
somehow be exploited for the creation of a program to per-
form the task. This is the idea behindprogramming by
example[15]. Programming by example is a natural ap-
proach to creating the transformational annotation for page
designers or novice programmers, because users need only
work with examples of how to transform a document at
hand, and are given automatically generated annotations
that can replicates the same transformation.

On the basis of the idea of annotation by example, we
have developed annotation generation tools [13, 18]. A
configuration of the example-based annotation tool is de-
picted in Figure 7. With this annotation tool, first a user
opens a target document to be customized (e.g., an HTML
file). The user then edits the document by using the full
capabilities of the WYSIWYG authoring tool. Although
a user’s editing actions are recorded into an operation his-
tory, the user does not have to care about the recording
process behind the scenes. When the editing is finished,
the user will have a customized document. At the same
time, the annotation generator creates transformational an-
notation for the customization, which can also be used by
a runtime engine (e.g., XSLT processor) to replicate the
transformation from the initial target document to the cus-
tomized document. Further details on the annotation gen-
eration procedure are reported in the other articles [10, 13].

All the above-mentioned editing operations actually
modify the target document by means of DOM (Docu-
ment Object Model) manipulation operations [6], and can
be created as transformational annotations. However, as-
sertional annotations cannot be created on the basis of the
DOM manipulation operations, but need to be declared ex-

Operation
h is tory

Target
D o c u m en t
Editor

C u s tom iz ed
D oc u m ent

Automatic Generation of
Annotation by Example

Core
Components

T arg et
D oc u m ent

A nnotation
D oc u m ent

A n n o tati o n
G en erato r

Figure 7: Tool configuration for transformational annota-
tion by example

(a)
O ri gi nal
p age

Target document

(b)
C l i p p ed
p age

U R L -x

U R L -x

Transcoding
P rox y

C l ip p ing
e ngine

H TTP
S e rv e r (U R L -x)

A nnotati on
document
A nnotati on
document

Figure 8: Overview of an annotation-based transcoding

plicitly as assertions. Annotation tools that follow the an-
notation by selection approach play a complementary role
in such situations instead of the example-based annotation
generation for the transformational annotations.

4 Applications of External Annotation

Annotations provide additional information about Web
contents, so that an adaptation engine can make better de-
cisions on the content re-purposing. The role of annota-
tions is to provide explicit semantics that can be under-
stood by a content adaptation engine [11]. Figure 8 de-
picts an overview of an annotation-based transcoding pro-
cess. Upon receipt of a request from a client, a Web docu-
ment is retrieved from a content server. Taking account of
the capabilities of the client specified in the HTTP request
header, a transcoding proxy selects one or more transcod-
ing modules. When a selected transcoding module requires
an annotation document, an annotation file is also retrieved
from a content server, which may or may not be the same
server that retrieved the Web document. The transcod-
ing module may simply return the original document, if a
client agent has the rendering capabilities compatible with
ordinary desktop computers [Figure 8 (a)]. Alternatively,
the original document may be returned with modification,
so that the original content can fit into a small screen device
[Figure 8 (b)]. The decisions about the content adaptation
are made taking account of the client capabilities specified
in the HTTP request header.

Original page C lipped page

(a) pres erv e

(b) m o d if y

(c) rem o v e

Figure 9: Simple example of an HTML page clipping

4.1 Annotation-Based Document Clipping

Web pages for e-commerce, for example, contain a lot of
information such as details of products, product images,
and numerous links to other areas of the site, when the
pages are created for the desktop computers. However,
it may be necessary to deliver portions of this page for
users to access through a Web-enabled phone rather than
a desktop browser. In such a case, the images and nested
HTML tables prepared for a nicely laid out page are a hin-
drance rather than help. The sheer amount of information
becomes unwieldy in the small display, and potentially ex-
pensive depending on the user’s wireless service.

Content adaptation can be done by using an annotation-
based page-clipping engine [20]. At content delivery time,
the page-clipping engine may modify the original doc-
ument with reference to page-clipping annotations and
client profiles sent over HTTP. The main idea in the page-
clipping annotation language is the notion of a clipping
state. By using<keep> and<remove> elements in the
annotation descriptions, users can specify the clipping state
to indicate whether the content being processed should be
preserved or removed.

As a simple example, an HTML page and its clipped re-
sults are shown in Figure 9. In this example, the header and
the first paragraph are preserved as shown in Figure 9(a).
The table element is modified by deleting the third column
and the second row. The cell-padding attribute of the table
is increased, so that each table cell can be provided with
margin space [Figure 9(b)]. In addition, the whole of the
second paragraph is removed as shown in Figure 9(c). All
the structural changes in HTML documents can be easily
done by using a WYSIWYG HTML editor.

Figure 10 shows an annotation document that realizes
the page clipping illustrated in Figure 9. This transforma-
tional annotation can actually be automatically generated
by using the example-based annotation generation tool
[10]. The<description> element prescribes a unit of
an annotation statement in the annotation language. The
target attribute is set to an XPath expression, and iden-
tifies the node on which the annotation will be applied, and
the take-effect attribute indicates whether the anno-
tation is applied before or after the target node. By specify-
ing target="/HTML[1]/BODY[1]/*[1]" as in Fig-
ure 10(a), the clipping state is activated after the first ele-

<?xml version='1.0' ?>
<annot version="2.0">

<!-- (a) Set the default clipping state to 'keep' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/*[1]">
<keep/>

</description>

<!-- (b) Remove a column and a row of the first -->
<!–- table, and change a cellpadding -->
<!–- attribute value -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/TABLE[1]">
<keep/>
<table>

<column index="3" clipping="remove"/>
<column index="*" clipping="keep"/>
<row index="2" clipping="remove"/>
<row index="*" clipping="keep"/>

</table>
<insertattribute name="cellpadding" value="4"/>

</description>

<!-- (c) Set the clipping state to 'remove' -->
<description take-effect="before"

target="/HTML[1]/BODY[1]/P[2]">
<remove/>

</description>
<!-- (d) Set the clipping state back to 'keep' -->
<description take-effect="after"

target="/HTML[1]/BODY[1]/P[2]">
<keep/>

</description>
</annot>

Figure 10: Example of page-clipping annotations

ment after the first<BODY>element, which in this case
is an <H1>. The <keep> element in Figure 10(a) in-
dicates that all the document elements encountered are
preserved, until otherwise instructed by another annota-
tion statement. The clipping state is changed to ’re-
move’ just before the second<P> element [Figure 10(c)],
and changed back to ’keep’ after the<P> element [Fig-
ure 10(d)]. As results, the second paragraph element in-
dicated by"/HTML[1]/BODY[1]/P[2]" is removed
while preserving the elements just before and after the re-
moved element.

Since HTML tables can often be complex elements to
clip, the annotation language provides special-purpose el-
ements to make table clipping easier. The<row> and
<column> elements allow user to clip rows and columns
without relying on complicated XPath expressions. The
table-clipping elements are used in the description shown
in Figure 10(b). This description sets the clipping state to
’keep’ just before the first table element, and also changes
the value ofcellpadding attribute to 4 by using the
<insertattribute> element. Thename attribute of
<insertattribute> can be specified with an arbi-
trary name of an attribute available for a target document.

In addition, the description element [Figure 10(b)] de-
clares that the third column, which is indicated by the
index value of the<column> element, is discarded,
while the remaining columns are preserved. Note here
that the wildcard character to indicate multiple columns
(index="*"). If a wildcard is specified, all rows (or

Clipping
portlet Annotation

d oc u m e nt
Annotation
d oc u m e nt

P orta l P a ge P orta l Server

Clipped
pa ge

O th er
pa ge O th er

portlet

H T T P
r e q u e s t

H T T P
r e s p ons e

Content Server A

Content Server B

P ag e
(a)

P ag e
(a)

P ag e
(b)

P ag e
(b)

Figure 11: Creation of a portal page with annotation-based
clipping portlet

columns) will be affected, except for those specifically in-
dicated by a separate<row> (or <column>) element. So,
all rows but the second are preserved for the target table.

Annotation-based document clipping is a useful tech-
nique for the adaptation of existing HTML documents to
varieties of small-screen devices, but the advantages are
not limited to device adaptation. Another promising ap-
plication of the document clipping technology is the use
in Web portals. Web portals are becoming an increasingly
popular technology, since it can provide a single point of
comprehensive, integrated access to both Web data and ap-
plications. However, each of the Web data or application
is for the most cases provided assuming to be presented on
a desktop browser, and would be too spacious to fit into
a small area in a portal page. Document clipping is thus
useful for Web pages that are aggregated into a portal site.

Figure 11 illustrates the process of creating a portal page
with an annotation-based clipping portlet. Portlets are spe-
cialized servlets that plug into and run in portals, and allow
to generate dynamic contents. When a portal server re-
ceives an HTTP request, the server dispatches the request
to each portlet aggregated in the page, and collects the re-
sults into a portal page to be returned (Figure 11).

4.2 Transformational Annotation by Selection
Figure 12 shows a screen of an annotation tool for clip-
ping portlet in the left, and a portal page that includes the
clipped page in the right. This annotation tool allows a user
to select the portions of the original page to be removed in
the portal page, and the annotation generator automatically
creates page-clipping annotations from the selected nodes.

This tool follows the configuration for transformational
annotation by selection [Table 1(b)], which is depicted in
Figure 13. This type of annotation tools rely on a target
document viewer rather than an editor in the case of an-
notation by example (see Figure 7). Therefore, users can
only selects the portions to be annotated, and are not al-
lowed to modify or edit the target document to come up the
desired results for customization. However, the tools that
follow the transformation annotation by selection can auto-
matically generate an annotation document, as long as the
users’ intension can be expressed solely with the simple se-
lection operations. To put it another way, it is possible for
both selection-based and example-based approaches to au-

Selected
n o des

Target
D o c u m en t
Viewer

Automatic Generation of
Annotation by Selection

Core
Components

T a r g et
D o cu m en t

A n n o ta ti o n
D o cu m en t

A n n o tati o n
G en erato r

Figure 13: Tool configuration for transformational annota-
tion by selection

tomatically generate transformational annotations, but the
selection-based approach is limited in the kinds of anno-
tation constructs to be exploited in the automatic gener-
ation as compared with the example-based approach, be-
cause the expressiveness of users’ selection on a document
viewer is far more limited than that of users’ full editing
capability on a document editor.

It is noteworthy, however, that the selection-based an-
notation generation was actually adopted for a software
product of an annotation tool for a portal server, and ex-
tensively used in the development of a supplier portal of
an automotive company. In this case, the automotive com-
pany extensively used the document-clipping portlet with
the annotation tool solely for the simple<keep> and
<remove> clipping operations. The primary reason for
the customer’s choice was just the simplicity of the au-
thoring process without advanced annotation constructs for
document clipping. Since the automotive company needs
to aggregate several thousands of existing pages into the
portal site, it was not practical to create sophisticated clip-
ping annotations for page by page, and it was reasonable to
provide just simple clipping capability to remove headers
and side menus in the original documents that were created
for browsers on desktop computers.

5 Concluding Remarks

In this paper, we presented a comprehensive framework of
annotation tools on the basis of an XML information set of
annotation document. In addition to the fundamental tool
configuration, namely, the assertional annotation by selec-
tion [Figure 3(a)], we explained the other two tool config-
urations for transformational annotation that allow auto-
matic annotation generation by either selection or example
[Figure 3(b), (c)]. Automatic generation is an innovative
approach to helping users with the generation of transfor-
mational annotations, since users of the generator do not
have to learn the annotation language at all. This approach
is particularly suitable for environments of annotation au-
thoring by page designers or novice programmers who are
not necessarily familiar with annotation languages.

Annotation
b y s e l e c tion

Ad ap tation b y
tr ans f or m ational

annotation

Portal Page on Browser

A nnotati on T ool

Figure 12: Annotation tool for Web clipping portlet

References
[1] Abe, M. and Hori, M.: A visual approach to authoring

XPath expressions.Proceedings of Extreme Markup Lan-
guages 2001, pp. 1–14 Montŕeal, Canada (2001).

[2] Abe, M. and Hori, M.: Robust pointing by XPath language:
Authoring support and empirical evaluation.Proceedings of
the International Symposium on Applications and the Inter-
net (SAINT 2003), Orlando, Florida, pp. 156–165 (2003).

[3] Denoue, L. and Vignollet, L.: An annotation tool for Web
browsers and its applications to information retrieval.Pro-
ceedings of the 6th Conference on Content-Based Multime-
dia Information Access (RIAO 2000), Paris, France (2000).

[4] DeWitt, S. : Basic Web Clipping Using WebSphere
Portal Version 4.1.IBM WebSphere Developer Domain,
http://www7b.software.ibm.com/wsdd/library/techarticles/
0206dewitt/dewitt.html (2002).

[5] Dublin Core Metadata Element Set, Version 1.1: Reference
Description.Dublin Core Metadata Initiative, Recommen-
dation, http://dublincore.org/documents/dces/ (1999).

[6] Document Object Model (DOM) Level 1 Spec-
ification Version 1.0. W3C Recommendation,
http://www.w3.org/TR/REC-DOM-Level-1/ (1998).

[7] Erdmann, M., Maedche, A., Schnurr, H.-P., and Staab, S.:
From manual to semi-automatic semantic annotation: about
ontology-based text annotation tools.Proceedings of the
COLING 2000 Workshop on Semantic Annotation and In-
telligent Content, Luxembourg (2000).

[8] Hori, M., Mohan, R., Maruyama, H., and Singhal, S.:
Annotation of Web Content for Transcoding.W3C Note,
http://www.w3.org/TR/annot/ (1999).

[9] Hori, M., Kondo, G., Ono, K., Hirose, S., and Singhal, S.:
Annotation-based Web content transcoding.Proceedings of
the 9th International World Wide Web Conference (WWW9),
pp. 197–211, Amsterdam, Netherlands (2000).

[10] Hori, M., Ono, K., Koyanagi, T., and Abe, M.: Annotation
by transformation for the automatic generation of content
customization metadata. In F. Mattern and M. Naghshineh
(Eds.) Pervasive Computing, First International Confer-
ence, Pervasive 2002, Lecture Notes in Computer Science
2414, pp. 267–281, Zurich, Switzerland (2002).

[11] Hori, M.: Semantic annotation for Web content adaptation.
In D. Fensel, J. Hendler, H. Lieberman, and W. Whalster
(Eds),Spinning the Semantic Web, pp. 542–573, MIT Press,
Boston, MA (2002).

[12] Kahan, J. and Koivunen, M.-R.: Annotea: an open RDF in-
frastructure for shared Web annotations.Proceedings of the
10th International World Wide Web Conference (WWW10),
pp. 623–632, Hong Kong (2001).

[13] Koyanagi, T., Ono, K., and Hori, M.: Demonstrational
Interface for XSLT Stylesheet Generation.Markup Lan-
guages: Theory & Practice, 2(2): 133–152 (2001).

[14] Lassila, O.: Web metadata: a matter of semantics.IEEE
Internet Computing, 2(4): 30–37 (1998).

[15] Lieberman, H. (Ed.):Your Wish is My Command: Program-
ming by example. Morgan Kaufmann Publishers, San Fran-
cisco (2001).

[16] Marshall, C. C.: Toward an ecology of hypertext annota-
tion. Proceedings of the 9th ACM Conference on Hypertext
and Hypermedia, pp. 40–49, Pittsburgh, PA (1998).

[17] Nagao, K., Shirai, Y., and Kevin, S.: Semantic annota-
tion and transcoding: making Web content more accessible.
IEEE Multimedia, 8(2): 69–81 (2001).

[18] Ono, K., Koyanagi, T., Abe, M. and Hori, M.: XSLT
Stylesheet Generation by Example with WYSIWYG Edit-
ing. Proceedings of the International Symposium on Appli-
cations and the Internet (SAINT 2002), pp. 150–159 (2002).

[19] RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Working Draft, http://www.w3.org/TR/rdf-schema/
(2002).

[20] Spinks, R., Topol, B., Seekamp, C., and Ims, S.: Doc-
ument clipping with annotation.IBM developerWorks,
http://www.ibm.com/developerworks/ibm/library/ibm-clip/
(2001).

[21] XML Information Set. W3C Recommendation,
http://www.w3c.org/TR/xml-infoset/ (2001).

[22] XML Path Language (XPath) Version 1.0.W3C Recommen-
dation, http://www.w3.org/TR/xpath (1999).

[23] XSL Transformations (XSLT) Version 1.0.W3C Recom-
mendation, http://www.w3.org/TR/xslt (1999).

