
Open Ontology Forge: An Environment for Text Mining
in a Semantic Web World

Nigel Collier and Koichi Takeuchi and Ai Kawazoe
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430 Japan
{collier,koichi,zoeai }@nii.ac.jp

Abstract

This paper describes the main features of Open Ontology
Forge (OOF), a client-side tool for use in cooperative on-
tology engineering and Web page annotation. Using OOF
allows experts in a domain of knowledge to engineer ontolo-
gies in RDF Schema and then create annotated contents as
instances of the ontology classes which form a link between
the text and the ontology. OOF offers many features to make
the life of the annotator easier within a user-friendly drag-
and-drop environment. The server-side of Ontology Forge
provides a hosting environment for domain ontologies and
annotations as well as an information extraction system for
reducing the effort of annotations based on supervised ma-
chine learning from examples. We discuss the motivations
for the design and highlight key features of the software.
Keywords: Ontology, RDF, Annotation, XPointer, Informa-
tion Extraction, Collaboration

Introduction
In this paper we describe Open Ontology Forge, a client-
side tool for use in cooperative ontology engineering and
Web page annotation. Using OOF allows experts in a do-
main of knowledge to engineer ontologies in RDF Schema
and then create annotated contents as instances of the on-
tology classes which form a link between the text and the
ontology. Ontologies and annotations are available in ma-
chine understandable form for sharing on the Semantic Web
(Berners-Lee, Fischetti, & Dertouzos 1999), i.e. the next
generation Web.

The cornerstone of the Semantic Web is machine under-
standable data that is available in a commonly understood
format. However creating the meta-data schemes in the form
of ontologies and annotating Web pages risks becoming the
occupation of a few highly trained professionals unless we
can provide support tools, i.e. the “off the shelf software for
writing Semantics” (Berners-Lee, Hendler, & Lassila 2001),
and environments that encourage ordinary users to partici-
pate and share their knowledge.

Ontology Forge is a client-server system that builds on
ideas from several previous projects and tools: ontology
editors such as Protege-2000 (Fridman Noy, Fergerson, &
Musen 2000) (Noyet al. 2001) and Ont-O-Mat (Handschuh,
Staab, & Maedche 2001), ontology servers such as Ontolin-
gua (Farquhar, Fikes, & Rice 1997) and annotation servers

(clients) such as Annotea (Amaya) (Kahanet al. 2000).
What characterizes Ontology Forge are two points. Firstly,
we believe that since ontologies are primarily community
artifacts that they need to be agreed and constructed in a
way that is accessible to the community. This led naturally
to a hosted development environment for ontology projects.
Secondly, to reduce the high cost of annotation we include
sophisticated information extraction technology that can be
rapidly customized to new domains to enable high quality
semi-automatic annotation based on the existing database of
expert-made annotations.

In Ontology Forge we adopt adomainview (Kashyap &
Sheth 1997) of knowledge representation and acquisition.
By domainwe mean a group of people who share a com-
mon view on the structure of knowledge in a particular area.
Their purpose in constructing an ontology is primarily to
formalize the relationships, concepts and properties for the
terminology used in that domain and to share this with oth-
ers. We broadly define terminology according to (de Besse,
Nkwenti-Azek, & Sager 1997) as “A lexical unit represent-
ing one or more words that represents a concept in a do-
main”. The domain view has two major advantages: the first
is that it modularizes knowledge by consent, and secondly
it decentralizes knowledge from any particular knowledge
scheme. Groups of users are free to get together and form a
domain in any area of knowledge that they consider mean-
ingful to themselves.

The key point is that our research brings together work
on high level knowledge representation and reasoning in the
Semantic Web and Artificial Intelligence communities with
surface text-level realization of this knowledge from the in-
formation extraction community. Since free texts provide
by far the highest proportion of knowledge available on the
Web, our vision is that annotated texts will provide semi-
structured data that describes proto-typical facts that are of
broad interest to users within the domain such as cell signal
transductions (Functional Genomics), missile launches (De-
fense), conference announcements (Academia) or company
takeovers (Stock Market). This should enable much greater
precision in Web searching, document summarization and
question answering for a new generation of ‘smart’ tools.

Having placed our research in context we now provide an
overview of the system starting with its design in Section
and knowledge model in Section . In Section we illustrate



the usage of OOF with a walk through of the construction of
small ontologies in the Car Advert and Functional Genomics
domains and discuss how a text can be annotated in Section
. We conclude in Section with a comparison of our system
against similar projects and plans for future work.

System Overview
The Ontology Forge design encourages collaborative partic-
ipation on an ontology project by enabling all communica-
tion to take place over the Internet using a standard Web-
based interface. After an initial domain group is formed we
encourage group members to divide labour according to lev-
els of expertise. This is shown in the following list of basic
steps required to create and maintain a domain ontology.

Domain Setup a representative for a domain (theDomain
Manager) will apply to set up an ontology project that is
hosted on the Ontology Forge server.

Community Setup theDomain Managerwill establish the
domain group according to levels of interest and compe-
tence, i.e.ExpertsandUsers.

Ontology Engineering Ontologies are constructed in pri-
vate byDomain Expertsthrough discussion and a series
of versions.

Ontology Publication When theDomain Managerdecides
that a version of the ontology is ready to be released for
public access he/she copies it into a public area on the
server.

Annotation When a public ontology is availableDomain
Userscan take this and annotate Web-based documents
according to the ontology. Annotations can be uploaded
to the server and stored in the private server area for shar-
ing and discussion with other domain members.

Annotation Publication TheDomain Managercopies pri-
vate annotations into the public server area.

Training When enough annotations are available theDo-
main Managercan ask the Information Extraction system
called PIA-Core (Collier & Takeuchi 2002) to learn how
to annotate unseen domain texts.

Improvement Cycle Annotation and training then proceed
in a cycle of improvement so thatDomain Userscorrect
output from the Information Extraction system and in turn
submit these new documents to become part of the pool of
documents used in training. Accuracy gradually improves
as the number of annotations increases. The amount of
work for annotators is gradually reduced.

In reality we expect that theOntology Engineeringstep
will be a complex cyclic stage of discovery with refine-
ment taking place in theAnnotationand Improvement Cy-
cle stages after intuitions are gained through examining ter-
minology and terminological relations in domain texts. We
view texts as not only a source of instance data but also as a
source of inspiration for discovering the formal classes and
relations in the ontology.

The overall system architecture for Ontology Forge is
shown in Figure 1. This shows the basic components on the

Figure 1: An overview of the Ontology Forge architecture

server side including a Web server, a database management
system and an application server which will primarily be re-
sponsible for information extraction. On the client side we
have the Open OntologyForge (OOF) ontology editor and
annotation tool. From now we will concentrate on describ-
ing the features of OOF.

Knowledge Model
The advent of the Semantic Web has ushered in a set of stan-
dards for the annotation of semantic content on the Web such
as XML for document structure, RDF for defining objects
and their relations, and RDF Schema for defining basic on-
tological modelling primitives on top of RDF. In this section
we will not be describing RDF/RDF Schema in any detail
as both languages are already well documented in the lit-
erature, e.g. (Brickley & Guha 2000)(Staabet al. 2000).
Instead we will focus on the specific characteristics of our
annotation scheme.

The root class in an Ontology Forge ontology is the an-
notation, defined in RDF Schema as a name space and held
on the server at a URI. The user does not need to be ex-
plicitly aware of this and all classes that are defined in OOF
will inherit these properties from the parent so that when in-
stances are declared as annotations in a base Web document,
the instance will have many of the property values entered
automatically by OOF such as linkage information. Basi-
cally the user is free to create any classes that help define
knowledge in their domain according to the limits of RDF
Schema.

We briefly now describe the root annotation class:

context This relates an Annotation to the resource to which
the Annotation applies and takes on an XPointer (De
Rose, Maler, & Daniel, R. (eds) 2000) value.



language The name of the language of this Annotation.

ontology id Relates an Annotation to the ontology and
class to which the annotation applies.

conventional form The conventional form of the annota-
tion (if applicable) as described in the PIA Annotation
Guidelines.

identity id Used for creating coreference chains between
annotations where the annotations have identity of refer-
ence.

constituents This is used to capture constituency relations
between annotations if required.

orphan This property takes only Boolean values corre-
sponding to ‘yes’ and ‘no’. After the annotation is cre-
ated, if it is later detected that the annotation can no longer
be linked to its correct position in docid, then this value
will be set to ‘yes’ indicating that the linkage (in context)
needs correcting. The mechanism for detecting broken
links is not yet defined by our system but we feel that this
is a necessary property for maintaining annotations.

author The name of the person, software or organization
most responsible for creating the Annotation. It is defined
by the Dublin Core (dublincore:1999 1999) ‘creator’ ele-
ment.

created The date and time on which the Annotation was
created. It is defined by the Dublin Core ‘date’ element.

modified The date and time on which the Annotation was
modified. It is defined by the Dublin Core ‘date’ element.

sure This property takes only Boolean values correspond-
ing to ‘yes I am sure’ and ‘no I am not sure’ about the
assignment of this annotation. Used primarily in post-
annotation processing.

comment A comment that the annotator wishes to add to
this annotation, possibly used to explain an unsure an-
notation. It is defined by the Dublin Core ‘description’
element.

Due to the lack of defined data types in RDF we make
use of several data types in the Dublin Core name space for
defining annotation property values. In OOF we also allow
users to use a rich set of data type values using both Dublin
Core and also XML Schema name space for integers, floats
etc. Users can also defined their own enumerated types using
OOF.

A partial view of an annotation (shown in shaded ovals)
in the Car Advert domain can be seen in Figure 2 showing
linkage into a Web document (shown in the boxed text at
the bottom) and part of the ontology hierarchy (shown in
clear ovals). The annotation shows an instance of a used car
called “Audi Coupe 2.3E” and a property calledyear with
value 1991. The property value itself appears in the text but
there is no linkage. If linkage were needed we would need
to create a class calledyear and declare a property whose
range was theyearclass.

Figure 2: Overview of an annotation.

Ontology Creation
Since text editing of ontologies and instances introduces too
many mistakes and frustrates the user it is generally accepted
that some level of tool support is required for creating on-
tologies and instances. In the case of Ontology Forge we
have produced the Open OntologyForge client software, col-
loquially known as OOF.

OOF basically accepts a subset of RDFS ontologies. The
major areas of restriction are:

multiple inheritance of classesRDFS allows classes to be
subclasses of more than one class, OOF does not allow
this;

multiple inheritance of instances OOF does also not al-
low instances to belong to more than one class;

OOF has much in common with other ontology editors
such as Protege-2000 and Ont-O-Mat. The basic purpose of
the editor is to allow users to declare concept classes, prop-
erties, property value types and assign class-relations and
class-properties. Properties are restricted to having a single
value range which must be a pre-defined type or a class in
the ontology. In this way properties can specify relations
between instances.

One point of difference between OOF and the other edi-
tors is due to our current focus on RDFS which means that
we do not have a way to specify cardinality on properties or
inheritance characteristics of properties as there is no direct
provision within RDFS at the metadata level for this. By de-
fault we allow all properties of a class to be inherited by its
subclasses.

An example of ontology formation in progress using OOF
can be see in Figure 3 where the expert has declared a top
level ontology for the Car Advert domain. We can see



Figure 4: Example of assignment of user defined properties
to classes. Here we see the propertyDriver airbag being
assigned to theCARclass with Boolean values.

Figure 5: Example of property inheritance from theCAR
parent class to one of its sub-classes. Note that the inherited
property is not editable since cardinality is not implemented
within RDFS.

that the expert has defined a number of properties of which
colour takes values from a new user-defined enumerated
type calledcolour type. In Figure 4 we see the expert adding
these properties to theCARclass. Subclasses ofCARsuch as
Alfa Romeoautomatically inherit these properties as shown
in Figure 5.

OOF includes many checking mechanisms that help the
user to create and maintain consistent ontologies and anno-
tations such as preventing users from deleting data types,
properties and classes if there exist instances which use
those definitions.

Annotating Instances
Although users are free to annotate in any way that they
like, one main purpose of Ontology Forge is to reduce the
high cost of making annotations using information extrac-
tion based on supervised machine learning (Takeuchi & Col-
lier 2002). For this to be effective we need to discipline the
user in the way that they declare annotations so that there is
a high level of consistency between different annotators in

the same domain and for this purpose we are working on a
set of guidelines.

There are three basic levels of annotation which conform
to the three levels of knowledge in the information extrac-
tion task defined by MUC (MUC6:TASK:95 1995). These
areNamed Entity, CoreferenceandEvent Extraction(incor-
porating the template element and scenario template task).
The first two are supported in the current version of Open
Ontology Forge with Coreference annotations considered as
a kind of second-class Named Entity which requires the an-
notator to declare the antecedent Named Entity before the
Coreference expression that points to it.

Coreference annotation tries to capture the identity rela-
tions between surface expressions in the text. We follow
a symmetricview of coreference whereby each expression
contributes equally to the definition of the extension of the
instance. This has two major advantages: no expression
needs to be nominated as the canonical form, and it is natu-
ral to extend coreference relations to expressions in different
documents.

A snapshot of an annotation session is shown in Figure
6 for a journal article in the Functional Genomics domain.
OOF has many useful features for the annotator, some of
them are major ones while others are less obvious and only
occurred to us after we had got feedback from users. One ex-
ample is the need for good memory management and speed
of annotation - our prototype version built in Java had many
performance problems when the number of annotations ex-
ceeded a thousand, consequently the current version has
been rebuilt entirely in C++.

Some features that are designed to make the life of the
annotator easier are:

• a convenient drag-and-drop annotation environment
which allows users to highlight a part of the text that they
wish to capture and drag it to the class in the ontology
where it becomes an instance;

• the value of the XPointer forcontext is automatically in-
serted into the property value as are values for other track-
ing properties such ascreatedandauthor;

• a full Web-browser view of the Web page is maintained
in the OOF main window including images. Annotations
are indicated using highlighted boxes whose colouring
scheme is customizable by the user - useful if the page
colour is the same as the default box colour.

• if annotations stretch over more than one line the indicat-
ing box naturally adapts itself to the Web page;

• annotations are search and replaceable - this was a major
feature that users requested from our first version;

• when a user captures an instance OOF automatically
searches for similar instances and offers the user the
chance to annotate these too, saving the user a lot of time
in duplicated work. Property values are automatically ad-
justed for each new instance;

• removal of leading and trailing white space - frequently
the user highlights a text area that includes spaces which
should be removed;



Figure 3: A snapshot from the formation of a simple Car Advert ontology. The tree on the left shows the class hierarchy. Along
the bottom are various ‘tabs’ which allow the user to focus on a different aspect of the knowledge base such as the Property
View or the Instances View. In the Property View experts can define new properties. The expert can choose predefined property
types such as ‘character’ or ‘Boolean’ and is free to define new types such as thecolour typebeing created here. Here we see
thatcolour typeis assigned to theColour property. Once a property is defined the expert can create a new class such asAlfa
Romeoand assign the new property to it. At annotation time the user will instantiate the expert-defined property values.



• automatic detection of overlapping annotations when a
user deletes or annotates;

• automatic detection of coreference dependencies when a
user deletes an annotation;

Our long term goal is to improve the quality of informa-
tion extraction in order to reduce the cost of human annota-
tion. For this to be effective there are two important points:
the first is a certain number of annotations, dependent on
the linguistic characteristics of the instances and the num-
ber of classes, and also theconsistencybetween annotations.
We hope that by providing a convenient environment like
Ontology Forge that users will be encourage to cooperate
so that this number will be achieved. More important per-
haps is consistency which is the long term key to obtaining
high accuracy, and since annotation is a community task we
must strive to obtain a high level ofinter-annotator agree-
ment, which we can measure by asking all the annotators
to annotate the same text according to the same ontology.
To achieve this goal an important part of our research is
the production of general annotation guidelines (Collieret
al. 2002) which try to cover the majority of general uncer-
tain cases such as whether or not an article should be in-
cluded at the start of an annotation (the {RAS protein} vs.
{the Big Apple}), or whether embedded annotations should
be used ({Leicester Square}PLACE vs{{Leicester}PLACE

Square}PLACE).

Related Work
There were several starting points for our work. Perhaps
the most influential was the Annotea project (Kahanet al.
2000) which provided an annotation hosting service based
on RDF Schema. Annotations in Annotea can be considered
as a kind of electronic ‘Post-it’ for Web pages, i.e. a remark
that relates to a URI. Annotea has several features which our
design has used including:

• use of XLink/XPointer linkage from annotations to the
place in the document where a text occurs;

• use of generic RDF schema as the knowledge model en-
hanced with types from Dublin Core;

• physical separation of ontology, annotation and base doc-
ument data as well as the people who create them;

• a consideration of annotations as first class objects;

However, there are several major differences between our
work and Annotea including various levels of support for
cooperative development of annotations and ontologies, do-
main groups and explicit roles and access rights for mem-
bers, and a focus on aiding consistency of annotation for the
purpose of information extraction.

Also influential in our development has been Protege-
2000 and other ontology editors such as Ont-O-Mat which
provide many of the same features as OOF including on-
tology editing and instance capturing as well as saving in a
variety of languages such as XML and RDF. In fact the first
version of OOF was built as a Java plug-in to Protege-2000
and allowed users to capture instances in texts and HTML

documents. In user trials however this earlier version suf-
fered from a number of drawbacks. The most serious we
found was that memory management in Java was taken out
of the control of the programmer and consequently become
slow and expensive as the number of instances captured ex-
ceeded several hundred. We therefore decided to continue
development using a Visual C++ client which could take ad-
vantage of the Windows user interface and tools such as Ex-
plorer and Microsoft Agent for the help system. The server
side remains fairly platform independent requiring a Web
server and an SQL-based database management system. In
our case we settled on Apache and Oracle on RedHat Linux
7.3.

While Protege-2000 provides a rich environment for cre-
ating ontologies it provides limited support for large-scale
instance capturing and collaborative development. Ont-O-
Mat (Handschuh, Staab, & Maedche 2001) and OntoEdit
from the University of Karlsruhe provide similar function-
ality to OOF but does not link instances back to the text or
have the built-in design focus on collaborative development
and information extraction.

Conclusion and Future Plans
Open Ontology Forge will be released in late-December
2003. There will then follow a period for testing which will
be finished in March 2003. The software for the project will
be freely available to download and groups are encouraged
to set up their own Ontology Forge servers using OOF as
the client. We will maintain the latest full featured version
of OOF and a working server at NII for hosting a limited
number of academic ontologies. The project Web site will
be available for general information on the project from Jan-
uary 2003 at http://ontology-forge.ex.nii.ac.jp.

OOF contains many features that we believe will be use-
ful to users but there are several services that we want to im-
plement from now. These include customizable output file
formats such as SQL, XML, DAML+OIL, OWL, and allow-
ing users to annotate non-text objects such as images. One
limitation of OOF is the currently it does not dynamically
download and link or verify RDF schemas from remote sites
outside Ontology Forge, although this is on our list of work
to do. So far we have looked at providing supporting guide-
lines for the annotation ofnamed entityandcoreferencesas
instances but we have yet to develop guidelines or a policy
on what constitutes anevent. This is a priority area for our
work in the coming months.

Acknowledgements
We wish to express our gratitude to the team at Axiohelix
for implementing our ideas and to Ken Satoh (NII) for help-
ing to support development on the first version of the client
software. This work was supported from various sources
including the Japanese Ministry of Education and Science
(grant no. 14701020) and an NII Leadership Fund grant.

References
Berners-Lee, T.; Fischetti, M.; and Dertouzos, M. 1999.
Weaving the Web: The Original Design and Ultimate Des-



Figure 6: A snapshot of an online journal article being annotated using the classes defined in a simple Functional Genomics
ontology. Annotations appear in blue boxes.



tiny of the World Wide Web. San Francisco: Harper. ISBN:
0062515861.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web.Scientific America29–37.
Brickley, D., and Guha, R. V. 2000. Resource Description
Framework (RDF) schema specification 1.0, W3C candi-
date recommendation. http://www.w3.org/TR/2000/CR-
rdf-schema-20000327.
Collier, N., and Takeuchi, K. 2002. PIA-Core: Seman-
tic annotation through example-based learning. InPro-
ceedings of the Third International Conference on Lan-
guage Resources and Evaluation (LREC’2002), Las Pal-
mas, Spain.
Collier, N.; Takeuchi, K.; Nobata, C.; Fukumoto, J.; and
Ogata, N. 2002. Progress on multi-lingual named en-
tity annotation guidelines using RDF(S). InProceedings
of the Third International Conference on Language Re-
sources and Evaluation (LREC’2002), Las Palmas, Spain,
2074–2081.
de Besse, B.; Nkwenti-Azek, B.; and Sager, J. C. 1997.
Glossary of terms used in terminology.Terminology
4(1):117–156.
De Rose, S.; Maler, E.; and Daniel, R. (eds).
2000. XML pointer language (XPointer) version 1.0,
w3c candidate recommendation, 11th september 2001.
http://www.w3.org/TR/xptr.
1999. Dublin core metadata element set, version 1.1:
Reference description. Technical Report, Dublin Core
Metadata Initiative, http://purl.org/DC/documents/rec-
dces-19990702.htm.
Farquhar, A.; Fikes, R.; and Rice, J. 1997. The On-
tolingua server: a tool for collaborative ontology construc-
tion. The International Journal of Human-Computer Stud-
ies46:707–727.
Fridman Noy, N.; Fergerson, R. W.; and Musen, M. A.
2000. The knowledge model of Protéǵe-2000: combin-
ing interoperability and flexibility. InProceedings of the
2nd International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW’2000), Juan-les-
Pins, France, 1–20.
Handschuh, S.; Staab, S.; and Maedche, A. 2001. CREAM
- creating relational metadata with a component-based,
ontology-driven annotation framework. InFirst Interna-
tional Conference on Knowledge Capture (K-CAP 2001),
Victoria, B.C., Canada.
Kahan, J.; Koivunen, M.; Prud’Hommeaux, E.; and Swick,
R. 2000. Annotea: An open RDF infrastructure for shared
web annotations. Inthe Tenth International World Wide
Web Conference (WWW10), 623–630.
Kashyap, V., and Sheth, A. 1997. Semantic heterogene-
ity in global information systems: The role of metadata,
context and ontologies. In Papzoglou, M., and Schlageter,
G., eds.,Cooperative Information Systems: Current Trends
and Directions. Academic Press.
DARPA. 1995. Information Extraction Task Definition,
Columbia, MD, USA: Morgan Kaufmann.

Noy, N. F.; Sintek, M.; Decker, S.; Crubezy, M.; Ferger-
son, R. W.; and Musen, M. A. 2001. Creating semantic
web contents with Protéǵe-2000.IEEE Intelligent Systems
16(2):60–71.
Staab, S.; Erdmann, M.; Maedche, A.; and Decker, S.
2000. An extensible approach for modeling ontologies in
RDF(S). InProceedings of Workshop on the Semantic Web,
held at the Fourth European Conference on Research and
Advanced Technology for Digital Libraries (ECDL 2000),
Lisbon, Portugal.
Takeuchi, K., and Collier, N. 2002. Use of support
vector machines in extended named entity recognition.
In Proceedings of the 6th Conference on Natural Lan-
guage Learning 2002 (CoNLL-2002), Roth, D. and van den
Bosch, A. (eds), 119–125.




