
Management of dependency between two or more ontologies

in an environment for distributed development

Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura, Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567 -0047 Japan

Tel: +81-6-6879-8416, Fax: +81-6-6879-2123
E-mail: {sunagawa, kozaki, kita, miz} @ei.sanken.osaka-u.ac.jp

Abstract
This paper describes the management of the
dependency between component ontologies in an
ontology as a whole and its use for collaborative
development of the ontology. It is necessary for
collaborative development of an ontology to manage the
influence of modification of ontologies to others. The
dependency is investigated to see how many types exist
and how to manage each of them. Functions to manage
such dependency are also designed for supporting
modification of the ontology caused by the modification
of other ontologies which influences on the dependency.
These functions make it easer to develop an ontology
collaboratively and contribute to reusing ontologies.

1. Introduction
In general, an ontology can be divided into several
component ontologies. Occasionally, building an
ontology is done collaboratively in which case
component ontologies are built and then they
are compiled into a unified ontology. These
component ontologies are identified according
to their conceptual level or domains.

For example, Fig.1 shows “Plant Ontology”,
which was built on Human Media Project
under the former Ministry of International
Trade and Industry [Mizoguchi 00]. This
ontology is separated into three parts: “Top
Level Ontology”, “Task Ontology” and
“Domain Ontology”. Furthermore, the
domain ontology is divided into two
ontologies: physical attribute and
equipment. “Equipment Ontology” is
further divided into ontologies of objects,
plant parts and function. In Fig.1, arrows

express the relation between an upper ontology and a
lower ontology. This is named “Super-sub Relation”
(discussed in section 2.1). Development of ontology as
a whole is achieved by editing and modification of its
component ontologies. Management of their relations
and explicit control of influence propagation caused by
the change in each components ontology contributes to
realization of such a collaborative development of an
ontology.

Hereinafter, section 2 discusses definitions of the
dependency between ontologies and the method to
keep the consistency of the dependency. Section 3
describes implementation of the proposed methods in
Hozo followed by concluding remarks.

Object
Ontology

Plant Part
Ontology

Function
Ontology

Equipment
Ontology

Physical Attribute
Ontology

Task
Ontology

Fig.1 Plant Ontology

(Domain Ontology)

Top Level
Ontology

2. Dependency between ontologies and its
management

We have argued the heavy part of ontology such as the
role concept in [Kozaki 00]. The dependency this paper
discusses is based on is-a relation and class constraint.
As these relations can be treated in RDF(S) or OWL,
our research will contribute to the development of
ontologies for the Semantic Web.

2.1 Dependency between ontologies
When constructing an ontology, concepts are usually
defined with reference to the definitions of other
concepts. In collaborative construction, those referred
concepts might exist in another ontology developed by
another person. That means some concepts in an
ontology depend on other concepts in another ontology.
This section discusses the dependency between
ontologies which is defined as in terms of the
dependency between concepts defined in respective
ontologies. The kinds of them are :

1) Super-Sub Relation (is-a relation)
Two ontologies are said to be in “super-sub
relation”, if and only if there are at least two
concepts in is-a relation and each of the two
concepts belongs to a different ontology of the two.
We named these ontologies “upper ontology” and
“lower ontology” respectively. The lower ontology
depends on the upper one at the point of inheriting
definition. In the “Plant Ontology”(Fig.1), we can
find this relation between “Top Level Ontology”
and “Equipment Ontology”, between “Equipment
Ontology” and ”Plant Parts Ontology”, etc.

2) Referring-to Relation (class constraint)
We define “referring-to relation ” as the relation
that a concept in one ontology refers to a concept
in another as a class constraint. We named the
ontology containing the slot being constrained
“referring ontology” and the other “referred-to
ontology”. In the “Plant Ontology” (Fig.1), we can
find this relation between “Plant Parts
Ontology” and “Physical Attribute Ontology”
etc.

To manage the dependencies, each component
ontology has the information about them;
 ・a copy of the definition of the concept it depends on
 ・the name and the version of the ontology it depends

on
Section 3 describes how to use this information.

2.2 Managing dependency between ontologies
2.2.1 Keeping consistency of the dependency
When editing an ontology, we should pay attention to
the influence the change on other ontologies. In some
cases, a change may destroy the consistency between
ontologies. We investigated two approaches to keep
consistency of the dependency. One is to prohibit
simply the change which influences on others. The
other is to modify the influenced ontology according to
the type of the change. This paper is mainly concerned
with the latter approach. 5 kinds of countermeasures
taken in the influenced ontology are

Ø To accept the change;

² 1-1) To modify influenced ontology for
accepting the change; The user makes
agreement on the change of the ontology and
tries to modify his/her ontology depending
on it. The influenced ontology needs to be
modified to adapt to the changed ontology.
The way to reflect the change of the
influencing ontology is mentioned later.

² 1-2) To leave the depending ontology
influenced by the change; In some cases,
the influenced ontology is not need to be
modified, as the changed ontology doesn’t
contradict it.

Ø To reject the change; When the user does not agree
on the change, his/her ontology depending on it
should be modified in order to get rid of the
possible contradictions at least in itself.
² To keep the dependency;

² 2-1) To modify infl uenced ontology
for rejecting the change; As far as
keeping the consistency of the
dependency, the user tries to modify
his/her ontology against the change and
reduce the influence. The way to negate
the influence of the change is
mentioned later.

² 2-2) To stay compliant with the last
version of the changed (depending)
ontology; Under controlling the
version of ontologies, the dependency
is kept in this way. If influencing
ontology would be changed again,
influenced one could adapt to the
change and the consistency would be
recovered.

² 2-3) To break the dependency; In order to
make the influenced ontology independent
of the others, concepts whose change
influences on it are imported in it and cut the
link of the dependency between the two.

In either case of accepting or not accepting,
modification of the influenced ontology should be
supported because of its complexity. So, we began with
conceiving the patterns of the change. And, for the
influence of each pattern, we investigated the possible
way of modification to keep the dependency. The
influenced ontology is modified based on this
framework.

We have two major kinds of patterns of the change:
operation on the concept itself and changing its
definition. The former includes the cases where a
concept has been deleted or a sub concept has been
added. The latter does the cases where the label has
been changed, a slot such as a part of or an attribute of
a concept has been deleted, added or a class constraint
has been changed. In all, we have 17 types of the
change of the concept according to the kind of
dependency (Table.1). And, as the countermeasures for
the change, we have 32 ways of modification in all.

In addition, the same situation also appears in a single
ontology that the concept is influenced by the change
of other concepts. In this paper, we consider especially
the influence between ontologies because support is
more required for the case of inter-ontologies than for
the case of intra-ontology.

2.2.2 Example of modifying an ontology to keep the
consistency of its dependency
In this section, we show two examples of the
dependency management in “Plant Ontology” of
Human Media Project (Fig.1).

Ex.1: Fig.2 shows a portion of “Plant Ontology” (in
Fig.1). “Heat Exchanging Device” is sub-concept of
(is-a) “Device”. “Driving Device” and “Info Device”
are so, too. Then, we can define super-sub relation
between “Equipment Ontology” and “Plant part
ontology”. Assume that the slot “Input Thing” has been
deleted from the concept “Device” in “Equipment
Ontology”. The change influences “Plant Part
Ontology”.
To cope with the change such as “Deletion of a slot in
Super-sub Relation”, four ways are supported. The
developer of “Plant Part Ontology” can select a
countermeasure out the following four:

1-2) To do nothing (to accept the change)
Deletion of “Input Thing” is applied to all influenced
concepts in “Plant Part Ontology”. (In the case of this
example, it is thought that manual change is needed
because of importance of the deleted definition.)
2-1) To add the same as delete d slot to a depending
concept in the lower ontology (to reject the change)
To reject the deletion of “Input Thing” in “Plant Part
Ontology”, the slot should be added to some concepts
which are overriding it.

Table.1 Types of the change of the concept

In Super-sub Relation
l Operation of a concept

Ø Deletion a concept
Ø Addition a sub concept

l Change of the definition
Ø Change of the label (name)
Ø Deletion of a slot

(a partial or an attribute concept)
Ø Addition of a slot

(a partial or an attribute concept)
Ø Change of the class constraint (inheriting)

ü Generalizing
ü Specializing
ü Change to a completely different concept

Ø Change of the class constraint (overridden)
ü Generalizing
ü Specializing
ü Change to a completely different concept

In Referring-to Relation
l Operation of a concept

Ø Deletion of a concept
Ø Addition of a sub concept

l Change of the definition
Ø Change of the label (name)
Ø Deletion of a slot

(referred by a role concept)
Ø Deletion of a slot

(not referred by a role concept)
Ø Addition of a slot

2-2) To stay compliant with the last version of the
modified ontology (to reject the change)
The old version of “Equipment Ontology” has been
saved in the ontology server (described in section 3.1).
“Plant Part Ontology” can keep dependence on it under
the version control.
2-3) to break the dependency (to reject the change)
Redefine “Device” with “Input Thing” in “Plant Part
Ontology” and break the dependency between the
ontologies. “Plant Part Ontology” is then changed to be
independent of “Equipment Ontology”.
It looks similar to 2-1). Superficially, it is the same.
But, 2-3) breaks the dependency, while 2-1) keeps the
dependency by copying with the current difficulty.
“Input Thing” is added to all the concepts which need
it as “Heat Exchange Device”.

Ex.2: Fig.3 shows part of “Plant Ontology” (in Fig.1).
“Liquid Thermometer” in “Plant Part Ontology” is
referring to “Liquid” in “Object Ontology” as a class
constraint of “M_Object”. Then, we can define

referring-to relation between these
ontologies. Assume that the
concept “Liquid” has been deleted
from “Object Ontology”. It
influences “Plant Part Ontology”.
To cope with the change such as
“Deletion of a concept in
Referring-to Relation”, four ways
are supported. The developer of
“Plant Part Ontology” can select a
countermeasure out the following
four:

1-1) To refer a super concept of
the delete d concept (to accept the
change)

As the class constraint of “Liquid
Thermometer”, we can refer
“Object” which is the super
concept of “Liquid”. This means
the class constraint to
“Measurement Attribute” become
looser a little.
2-1) To add the same as the
delete d concept to the referring
ontology (to reject the change)
This way means the deletion of
“Liquid” is denied in “Plant Part
Ontology”. The author redefines
“Liquid” in “Plant Part Ontology”,
and establishes newly super-sub
relation between “Plant Part
Ontology” and “Object Ontology”

through is-a relation between “Liquid” and “Object”.
(However, this method should be temporary adjustment.
Because it is not desirable that only one concept, which
is a “Object”, is defined in the diffe rent ontology from
“Object Ontology”, in which the other concepts of
“Object” are defined.)
2-2) To stay compliant with the last version of the
modified ontology (to reject the change)
It is the same as Ex.1.
2-3) To break the dependency (to reject the change)
It is the same as Ex.1.

3. Distributed development with “Hozo”
On the basis of investigation described above sections,
we designed the functions to manage the dependency
between ontologies and to keep its consistency. And
we have implemented these functions as a sub system
of our ontology development system, “Hozo”. The
extension provides more effective collaborative
development for user.

super-sub relation

Fig.2 An example of super-sub relation

(Plant Part Ontology)

(Equipment Ontology)

(Object Ontology)

(Plant Part Ontology)

referring-to relation

Fig.3 An example of referring-to relation

3.1 “Hozo”, an environment for building
ontologies
We have developed an environment, named “Hozo”
[Kozaki 00, Kozaki 02], for building ontologies based
on fundamental ontological theories. “Hozo” is
composed of “Ontology Editor”, “Onto-Studio” and
“Ontology Server” (Fig.4). The ontology editor
provides users with a graphical interface, through
which they can browse and modify ontologies by
simple mouse operations. This system manages
properties between concepts in the is-a hierarchy. The
Onto-Studio is based on a method of building
ontologies, named AFM (Activity-First Method)
[Mizoguchi 95], and it helps users design an ontology
from technical documents. The ontology server
manages the built ontologies and models.
Because the architecture is implemented in Java and
the ontology editor is an applet, it can work as a client
through Internet. Hozo manages ontologies and models
considering who is its developer. For each ontologies
in Hozo, its author can define and modify it, and the
other users can only read and copy it. It lets share
ontologies among users without explicit version
control.
Models are built by choosing and instantiating concepts
in the ontology and by connecting the instances. Hozo
also checks the consistency of the model using the
axioms defined in the ontology. The ontology and the
resulting model are available in different formats (Lisp,
Text, and XML/DTD) that make it portable and
reusable.

3.2 Implementing the function for managing
dependencies between ontologies
To management the dependency described in section
2.1, we use the information in each ontology about the
dependency it has.

3.2.1 The function for managing dependencies
between ontologies
We have designed a tool, named “Ontology Manager”,
for managing dependencies between ontologies. Fig.5
shows its interface. Ontology Manager consists of 4
panels: “Ontology List”, “Ontology Viewer”,
“Ontology Information Panel” and “Dependency
Panel”. These panels are to show users a series of
information about ontologies build with Hozo.

・Ontology List shows a list of ontologies which is
registered in Ontology Server. Users can select an
ontology, and the information about it is shown in
other panels.
・Ontology Viewer shows dependencies graphically by
using nodes and links which each of them represent an
ontology and super-sub relation, respectively. Users
can grasp easily the outline of dependencies.
・Ontology Information Panel shows the name, file
name, author, version, last update of the selected
ontology.
・Dependency Panel shows the lists of ontologies
which have a dependency with the selected ontology.
They are classified by their types. In section 2.1, we
defined 4 types: upper, lower, referring and referred-to.
Users can select any of them by tabs. The table informs
users of names of ontologies, concepts which constitute
a dependency, version of ontologies and whether that
concept is changed or not. They are necessary to
support modification to cope with changes.

3.2.2 The function for supporting modification to
cope with the change
When the user is going to edit an ontology and select it
on Ontology Manager, this system checks the change
of the ontologies it depends on. And, Ontology

Manager shows
him/her which
ontology has been
changed and might
destroy the
consistency of its
dependency. The
user can see that the
color of the node of
changed ontology is
turning in Ontology
Viewer and the
changed concept is
checked in
Dependency Panel.

Next, to keep the
consistency of

L
anguage

m
anagem

ent system

Ontology Server

Clients
(other agents)

building /
brow

sing

O
n

to
lo

gy
E

d
ito

r

Ontology/
model authors

Models

OntologiesOntologies reference
/ install

management of
ontologies and models

Onto-Studio
(a guide system for

ontology design)

supportsupport

Fig.4 the architecture of Hozo

dependency, the user should get more information that
how the influencing ontology has been changed and
what countermeasures are supported. These are shown
in the panel, named “Tracking Panel” (Fig.6). It lists
the change of the influencing ontology and the possible
countermeasures for coping with each change. The user
selects the change of the ontology and the
countermeasure for it. Then his/her ontology is
modified semi automatically and the dependency is
kept its consistency.
This function is used when the user opens the
influenced ontology to edit it and whenever he/she
requests the change information of other ontologies..

Checking the change of influencing ontology is
achieved by a comparison between the definition of
depended concepts and its copy the influenced
ontology has (described in section 2.1). If the
consistency of dependency may be broken, the system

lists the kind of detected change and
countermeasures for it based on the
patterns described in 2.2.1.

4. Related Work
Some other ontology building tools have
been developed in the similar way to us.
While OntoEdit [Sure 02] allow multiple
users and control their access to the same
ontology to develop it collaboratively, we
do not allow such operation. Instead, we
allow users to divide an ontology into
several component ontologies and to
manage the dependency between them.
The Karlsruhe Ontology and Semantic
Web framework (KAON) has developed
an application, which resembles our
system [Ljubljana 02]. They have
investigated a dependency management
similar to ours mainly for supporting
evolution of ontology. From the view
point of collaborative development of
ontologies, our system has types of the
change of an ontology and tracking it for
providing sophisticated help.

5. Conclusion
In this paper, we discussed the
management of dependency between
ontologies to facilitate collaborative
development of an ontology. By using
this system, we can manage the

dependency and keep the consistency for some patterns
of modification of ontology. The prototype of this
system has been implemented. Further, we understand
this system needs improvement.

l Other relations between ontologies;
We have dealt two types of dependency between
ontologies such as “super-sub” relation and
“referring-to” relation. Now we can see other kinds of
relations, which are based on content of the ontology;
such as a task-domain relation, a role concept - a basic
concept relation and so on. It may be useful for
supporting the development of ontology to
accommodate users with a framework to manage
content relations.

l Support for agreement making between users;
Agreements are indispensable for building ontology.
Especially for accepting the modification of the

Ontology
Information

Panel

Ontology
List

Ontology
Viewer

Dependency
Panel

Fig.5 Ontology Manager

Fig.6 Tracking Panel

ontology, it is important for authors to know the
intention of it. However, in general, it is difficult to
communicate in a distributed development. To support
communication between users make development
ontology more easily.

l Division and integrate of ontology;
On mentioning “Plant Ontology”, we didn’t explain
why it can be divided so. It is true that the component
ontologies are identified according to their conceptual
level or domains, but we didn’t discuss how to divide
and integrate ontology in this paper. To make it clear
the border of component ontologies is useful for
dividing, integrating and also reusing an ontology.

6. References
[Kozaki 00] Kouji Kozaki, Yoshinobu Kitamura,

Mitsuru Ikeda, and Riichiro Mizoguchi:
Development of an Environment for Building
Ontologies Which Is Based on a Fundamental
Consideration of "Relationship" and "Role", Proc. of
the Sixth Pacific Knowledge Acquisition Workshop
(PKAW2000), pp.205-221, Sydney, Australia,
December 11-13, 2000

[Kozaki 02] Kouji Kozaki, Yoshinobu Kitamura,
Mitsuru Ikeda, and Riichiro Mizoguchi: Hozo: An
Environment for Building/Using Ontologies Based
on a Fundamental Consideration of Role” and
“Relationship”, Proc. of the 13th International
Conference Knowledge Engineering and Knowledge
Management (EKAW2002), pp.213-218, Sigüenza,
Spain, October 1-4, 2002

[Ljiljana 02] Stojanovic Ljiljana, Maedche Alexander,
Motik Boris, Stojanovic Nenad: User-driven
Ontology Evolution Management, Proc. of the 13th
International Conference Knowledge Engineering
and Knowledge Management (EKAW2002),
pp.213-218, Sigüenza, Spain, October 1-4, 2002

[Mizoguchi 95] R. Mizoguchi, M. Ikeda, K. Seta, and V.
Johan: Ontology for Modeling the World from
Problem Solving Perspectives, Proc. of IJCAI-95
Workshop on Basic Ontological Issues in
Knowledge Sharing, pp. 1-12, 1995.

[Mizoguchi 00] Mizoguchi, R., Kozaki, K., Sano, T.,
and Kitamura, Y.: Construction and Deployment of a
Plant Ontology, Proc. of the 12th International
Conference Knowledge Engineering and Knowledge
Management (EKAW2000), pp.113-128,
Juan-les-Pins, France, October 2-6, 2000

[Sure 02] York Sure, Michael Erdmann, Juergen
Angele, Steffen Staab, Rudi Studer, and Dirk

Wenke: OntoEdit: Collaborative Ontology
Development for the Semantic Web, Proc. of the
First International Semantic Web Conference
(ISWC2002), Sardinia, Italy, June 9-12, 2002.

