
RDF Authoring Environments for End Users

Dennis Quan

MIT Artificial Intelligence Laboratory
200 Technology Square

Cambridge, MA 02139 USA
dquan@ai.mit.edu

David R. Karger

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
karger@theory.lcs.mit.edu

David F. Huynh

MIT Artificial Intelligence Laboratory
200 Technology Square

Cambridge, MA 02139 USA
dfhuynh@ai.mit.edu

Abstract
The Semantic Web enables powerful agent-facilitated nego-
tiation and retrieval functionality by enabling the transfer of
machine-readable metadata across the Internet. This next
generation Web presupposes the mass availability of meta-
data such as clothing measurements, busy/free time calendar
indications, and dietary restrictions, meaning that users will
need to provide more information to their systems to reap
the aforementioned benefits. Current tools for capturing on-
tology-encoded metadata from users are ill-suited for this
task, requiring knowledge of ontologies or the ability to
navigate generalized abstract directed graphs. In this paper
we present user interface paradigms based on the idea that
an object can be represented on the screen by an extensible
family of views. We present several strategies for allowing
users to create RDF metadata by manipulating views, includ-
ing a drag and drop form-based property editor and a view-
based graph editor. Users benefit from being able to interact
with objects by means of views suited to the context at hand,
such as photograph representations or human-readable
summary descriptions, rather than text fields with plaintext
strings or URIs. Finally, we discuss a strategy for enabling
advanced users to construct ontologies and customized
views and to distribute them to users unfamiliar with model-
ing knowledge, ultimately giving end users intuitive inter-
faces for entering metadata.

Motivation

The Semantic Web provides a foundation upon which ma-
chines will be able to perform sophisticated coordination
activities automatically, such as scheduling appointments,
finding products that match specific criteria, and sharing
ratings and opinions of goods and services over the Internet
[3]. These activities require that specific pieces of knowl-
edge, ranging from people’s calendars to product specifica-
tions, be made available in machine-readable form. The
Resource Description Framework (RDF) was designed spe-
cifically as a standard means of encoding such information
for the Semantic Web [2]. As the amount of information
recorded in RDF grows, the activities described above will
start to become possible.

Technologies for exposing database information as XML
or RDF have been developed and allow existing systems to
participate in the growth of the Semantic Web. However, an
important bottleneck to the proliferation of RDF as a plat-
form for conducting everyday activities, such as coordinat-
ing schedules and sharing opinions, is the dearth of tools
designed to allow end users to express information in RDF.
Today’s RDF authoring tools generally come in four flavors:
(1) ontology editors such as Protégé [6], OilEd [9] and Ont-
o-mat [4]; (2) graph-based representation viewers such as

IsaViz [5]; (3) schema-specific user interfaces (the type
automatically generated by database applications such as
Microsoft Access and FileMaker) including Reggie [10]
and Ont-o-mat; and (4) taxonomy editors exposed by tools
such as Protégé and used by services such as the Open Di-
rectory Project [11]. However, existing tool implementa-
tions have for the most part focused on maintaining onto-
logical constraints and not on addressing the HCI issues of
information collection.

At the same time, a lot of the information that needs to
eventually be provided in RDF is already being collected
relatively successfully by current software. In fact, end user
software employs many of the same approaches to informa-
tion collection as those used by RDF authoring tools but is
“streamlined” enough to be intuitive to non-technical peo-
ple. For example, users know how to drag and drop con-
tacts into the “To” field of an e-mail editor to fill in a mes-
sage header form (header forms can be presented by many
ontology editors). A simple row of radio buttons allows
Web sites that sell books to collect rating information from
customers. Diagramming software such as Microsoft Visio
allows users to draw organization charts and relationship
diagrams. Although not often considered as such, the kinds
of information collected by the above user interface para-
digms are also the kinds of information one wants to record
in RDF for machine consumption.

Of course the interfaces associated with these examples
are built from ontological constraints, such as the set of
possible ratings for a book or the presence of a “To” prop-
erty in an e-mail message header. Some users will under-
stand how to put together basic schemas given the right
tools, and the system should allow these users to conven-
iently share their schemas with others in the same commu-
nity spirit as the current Web. Users can easily become fa-
miliar with incorporating Web content such as clip art,
news articles, or tables into their documents and e-mails
because of the ease with which Web browsers and word
processors (through copy and paste or drag and drop) allow
users to take advantage of publicly-posted information.
Semantic Web client-side software must be able to allow
users to take advantage of schemas posted on the Web just
as easily.

Approach

In this paper we present user interface paradigms for allow-
ing users to record many different forms of metadata, i.e.,
create and manage properties of resources (the Semantic
Web term for object) and relationships between resources.

The basic principle behind this paradigm is the idea of
views—user interface components that serve as proxies for
resources on the screen. Several views may be associated
with any one resource; for example, a person may be dis-
played as an icon (an icon view) or as a large key-value pair
listing as is the case in an address book (a property listing
view). New views may be introduced into the system, al-
lowing limitless freedom and flexibility in terms of how an
object may be presented in a manner most suitable to the
current context.

Exposing resources as views enables a number of advan-
tages. One benefit is that users are made able to work with
their information by direct manipulation, an HCI concept
that has found to be successful in past research [7]. For ex-
ample, users can drag and drop a view into a list as a means
of indicating to the system that the resource represented by
the view should be added to that list. Another advantage is
that the problem of exposing a user interface by which users
can manipulate the properties of a resource can then be cast

as a problem of designing appropriate views for that re-
source, meaning that one does not need to rely on a handful
of views to handle all possible kinds and types of resources.

Instead, we have developed several fundamental para-
digms that correspond to various modalities in which users
can specify information. These paradigms correspond to the
four types of tools mentioned above. The most basic of
these is the property editor, which allows users both to
specify metadata and to customize the ontology by filling in
or rearranging a form (types 1 and 3). We also describe
paradigms for managing lists of resources and for placing
resources into taxonomies (type 4). Finally, we present a
graph editing paradigm that allows users to specify the rela-
tionships between resources visually when appropriate
(type 2).

While these approaches for metadata input have been ex-
plored previously, what distinguishes the work presented
here is the fact that views that embody the paradigms given
here usually embed views of other resources. A property

Figure 1: Haystack screenshot

editor uses views to represent values of properties rather
than ordinary text field widgets, resulting in greater flexibil-
ity in terms of how complex properties can be presented. A
graph editor also uses views to represent nodes in a graph
instead of static, un-manipulable ovals labeled with URIs.
Users benefit from interacting with their information in
terms of graphical representations that are most appropriate
to the context at hand (e.g., using a photograph view of a
person instead of a URI for representing people in an or-
ganization chart).

The user interface paradigm presented here is embodied
in our information management tool called Haystack [1].
Haystack is designed to help users easily manage their
documents, e-mail messages, appointments, tasks, and other
information. RDF forms the basis of Haystack’s data model
and is used to describe documents’ properties and the con-
nections between documents. Haystack’s user interface,
depicted in Figure 1, is composed of an extensive collection
of views representing resources such as the user’s inbox,
calendar, favorites collection, and news reports. Haystack
views are implemented in a combination of Java and an
RDF scripting language called Adenine [1]. By taking ad-
vantage of the various paradigms described in this paper,
Haystack enables users to describe RDF metadata such as
e-mail headers, appointment details, document taxonomies,
and even descriptions based on custom schemas such as
flight itineraries and bibliographic entries. This metadata is
then usable by Semantic Web agents and other programs
that understand RDF.

View Architecture

At the heart of the paradigms presented in this paper is a
user interface architecture specifically suited to presenting
information in terms of views. Specifically, a view is a
component that displays certain types of resources in a par-
ticular way. A given RDF class may have any number of
different views associated with it. Furthermore, views are
described in RDF, allowing a view to be characterized ac-
cording to the RDF classes it supports and by the way it
displays resources (e.g., full screen, in a one line summary,
as an applet, etc.). When a resource needs to be displayed
in Haystack in a certain way, such as full screen, a view is
chosen that possesses the necessary characteristics.

As components, views enable pieces of user interface
functionality to be reused. The developer of a one line
summary view for contacts (perhaps displaying a person’s
name and telephone number) provides an RDF description
to the system that enables developers that need to display
summaries of contacts to reuse the component. The best
example of reuse can be seen in the case of views that em-
bed views of other resources. For example, a view of an
address book containing contacts and mailing lists needs
not implement views for displaying contacts and mailing
lists; the system provides a way for views to specify that a
resource needs to be displayed at a certain location on the
screen in a certain fashion (e.g., as a one line summary). In
this way composite views can be constructed that leverage

the specialized user interface functionality of the child
views that are embedded.

When a view is instantiated, the system passes the view a
context object that informs it of the resource to be displayed.
The context object also contains a pointer to the parent
view’s context object, if one exists as a result of a view
being embedded within another view. In this way views are
made aware of the context in which they are displaying in-
formation. For example, if an address book view is display-
ing a list of people by embedding individual person views,
the person view can know not to display the “Add to Ad-
dress Book” button, since it knows that it is embedded
within the address book’s view and hence is displaying a
resource that is already in the address book.

Also, because the system is responsible for instantiating
views and keeping track of where child views are to be em-
bedded within parent views, the system can provide default
implementations of certain direct manipulation features for
free. A good example is drag and drop: When the user starts
to drag on a view, the system knows what resource is being
represented by that view, such that when the view is
dropped elsewhere in the user interface, the drop target can
be informed of what resource was involved instead of sim-
ply the textual or graphical content of the particular repre-
sentation that was dragged.

Take the example of filling in a list of meeting attendees
on a form. Instead of retyping or copying and pasting names
of people from an address book, a user can drag and drop
contacts from an address book into the list. Because the
views representing contacts in the address book are associ-
ated with the resources they represent and not just the
names of the contacts, the identities of the contacts’ re-
sources can be preserved. The alternative opens the possi-
bility for ambiguity because information is lost. For exam-
ple, what if there are two people named “John Doe” known
to the system? Specifying the text string alone is not suffi-
cient to disambiguate which John Doe is intended, even
though it is clear that the John Doe desired is the one that
the user selected in the address book.

Property Editors

The remainder of the paper presents various paradigms that
result naturally from the basic concept of views serving as
representations for resources. The first paradigm we present
is the property editor, which is in essence a form in which
users can edit the property-value pairs associated with a
resource. A property editor is actually composed of a se-
quence of views of a specific type that display RDF proper-
ties such as “title”, “creator”, etc. The list of properties can
be manually specified or derived from the RDF Schema
definitions of the types of the edited resource. In addition to
displaying the name of the property, an RDF property view
detects from context what resource is being edited and dis-
plays a list of the values under the property by embedding
views for each value, as depicted in Figure 2. (Literal val-
ues have a special view associated with them that enable
literals to be edited as text strings.) Because property edi-
tors are simply lists of RDF property views, associating new

properties with a resource can be accomplished by dragging
and dropping properties into the blank area at the bottom of
a property editor.

Figure 2: RDF property view of "Contains"
property

This use of view embedding is in contrast to what most
ontology editing environments available today provide, in
which users must work with plaintext representations of
properties and their respective values. URIs are meant to be
computer-usable names for maintaining the identities of
distinct resources in an RDF representation. While some
URLs are easy to remember because of marketing (e.g.,
“http://www.priceline.com/”), the majority are not (in par-
ticular randomly generated URNs), and users should not be
required to remember them or enter them into forms. In fact,
we argue that users should not even need to see them, be-
cause users derive no useful benefit by seeing them. By
using views to represent resources in the property editor
and elsewhere, the system allows users to deal with familiar
representations of resources such as icons and human-
readable names.

This last point can be further emphasized if one considers
that some resources serve as anonymous nodes for gluing
together multiple parameters in an n-ary relationship. Take
the example of a contact editor that exposes both a home
phone number and a work phone number property. Suppose
further that the range of these phone number properties is a
phone number resource, encapsulating the country code,
city code, area code, and local exchange number as proper-
ties. A user is not likely to consider a phone number a sepa-
rate entity, one in which the separate properties of the
phone number must be individually entered and displayed
every time a contact is shown. In our paradigm, a special-
ized view can be provided to package together the various
properties of a phone number resource and present them in
a unified form. In other words, views can be employed to
expose only the RDF property relationships important to the
user and not the ones that are present in the data representa-
tion for structural and ontological reasons.

Despite our advocacy for a view-based approach, it is
worth pointing out that there are times in which a textual
specification is the most natural means of input, such as
when a portion of the name of the resource in question can
be conveniently recalled. We advocate the use of type-
ahead support in these cases, such as that found in most
modern integrated development environments, whereby the
user would only need to type in as much of the name or
description of the resource being described to uniquely
match the text input with an existing resource in the system.
Type-ahead support has been incorporated in the RDF
property view in Haystack and is shown in Figure 3.

Figure 3: Property editor with type-ahead
window shown

Collections and Taxonomies

Separate from managing the properties of individual re-
sources, another important use for creating RDF metadata is
to organize resources into groups that share some set of
characteristics. Two good examples of these are RSS feeds
(collections of news articles published in tandem) and the
Open Directory taxonomy. (Here we define taxonomy to
mean a large hierarchical organization scheme in which
documents or other resources may be classified at every
level of the hierarchy, such as those exposed by the Open
Directory or Yahoo!.) In this section we will examine para-
digms for enabling users to create collections and taxono-
mies in RDF.

Taxonomy, perhaps one of the simplest forms of ontol-
ogy, gives users what is in effect a series of unary predi-
cates, which indicate an object’s membership in a collection.
It is also one of the most highly employed forms of ontol-
ogy; management of file system directory trees and Web
page bookmarks are all examples. Finally, in addition to
helping people organize files, classification into a taxonomy
has the end goal of helping users find their information later
[8]—a key motivation for maintaining metadata in Haystack.

Several views exist in Haystack for managing collections
of resources. Fundamentally, each serves to embed views of
a certain kind to display the resources that are members of
the collection. Many different presentation styles result

from this simple principle. For example, a collection view
that embeds thumbnail views of its members can be used to
display photo galleries (see Figure 4), while a view that
embeds small card views can be used to display address
books. Adding items to a collection can be performed by
simply dragging and dropping items into the collection’s
view.

Figure 4: Example collection view with em-
bedded thumbnail views

Furthermore, taxonomies—in essence,

collections of collections—play a special
role in Haystack. Users are given quick
access to taxonomies for use in organizing
their documents by means of the categori-
zation pane, seen in Figure 6. This pane can
be kept open while documents, Web pages,
e-mails, or other objects are being viewed
or edited. Placing an object into one or
more collections becomes a simple matter
of checking the boxes corresponding to the
collections desired. (Currently, only one-
level taxonomies are supported in Haystack;
support is planned for deeper hierarchical
taxonomies in the future.)

Graph Editors

Finally, we examine the problem of input-
ting metadata whose primary purpose is to
express relationships. We postulate that
manipulating directed graphs can be a natu-
ral paradigm for dealing with connections
between resources because of its similarity
to the means employed on paper for dis-
playing connections between concepts—
diagrams and charts—which can be espe-
cially effective means for recording ideas.
Venn diagrams, UML diagrams, family
trees, organizational charts, and process,
causality or flow charts are used by people
in a variety of fields to legibly express rela-

tionships between a set of entities or activities. Even look-
ing beyond paper, we note that designers in a number of
domains often use sticky notes and a whiteboard to conduct
brainstorming sessions. Ideas are first recorded on the
square sheets, attached to the drawing surface, and anno-
tated with arrows or other connectors. In a similar fashion,
grammar school students working on school projects often
use note cards to capture ideas from various sources, and
then lay out the cards in order to solidify the organization of
their final reports.

Because diagrams are such a powerful means for display-
ing and capturing information, we consider graph editing to
be a key paradigm for interacting with RDF data when the
user wishes to focus on the relationships between resources.
A graph editor can present a collection of RDF statements
in the obvious manner by representing resources as nodes
and properties as arcs connecting nodes. However, taken to
its extreme, graphical representations can be extremely mis-
leading to users. Although from an ontological perspective,
we can model the relationship expressed in the sentence
“Bob is 25 years old” by two nodes named “Bob” and “25”
connected by an arrow labeled “age” , this notion may not
be intuitive to users, who are used to age being a property
of people that is entered in a form-like fashion. Even for
data that users usually regard as relationship-oriented, one
must be careful to only display the relationships and nodes
that are important at any given time.

Figure 5: Use of a graph editor for displaying a reply graph

To address these issues, graph editors can embed differ-
ent types of views to display the resources being manipu-
lated in order to control the level of detail being presented.
Figure 5 shows an example of Haystack displaying a con-
versation as a graph of messages. Although the ontology for
messages includes properties such as “From”, “To”, and
“Body”, these fields are not visualized as arcs. Instead, the
type of view that is specified by the conversation’s view for
embedding displays a snippet of the message’s body as well
as an indication of who sent the message. The focus is
placed on the “in reply to” connections that exist between
messages. To a user looking to gain an idea of the “big pic-
ture” of the flow of the conversation, the approach adopted
here is arguably more useful than one in which all RDF
resources present in the data representation of this conver-
sation, such as the originating and destination e-mail ad-
dresses in the “To”, “CC”, and “BCC” fields, the message

Figure 7: Example of paradigms working together

Figure 6: Categorization pane

bodies, and the attachments (as well as the predicate links
connecting them) are visualized. And, as before, using
views to render resources to the screen allows the system to
display arbitrary collections of resources without requiring
graph editors to have any hard-coded notions of how to
display graph nodes.

In addition to enabling users to visualize relationships,
support is planned to allow users to select an RDF prop-
erty/predicate from a list and to drag arcs from one node to
another. This list can be derived from an ontology by se-
lecting all properties whose domain and range types are
those possessed by resources in the graph. The palette of
possible arcs will be displayed as other collections are dis-
played—as a sequence of views—meaning that other predi-
cates can be added to the palette by means of drag and drop.
Similarly, resources (nodes) can be added to the graph by
dragging views of those resources into the graph.

Example Scenar io

We feel it is important to emphasize that the various para-
digms presented here are complementary and can be used
together to construct sophisticated user interfaces for work-
ing with various kinds of metadata. Figure 7 illustrates a
screenshot from Haystack displaying an organization chart
in the graph editor that allows a user to work with the rela-
tionships between various people. In addition, the preview
pane located on the bottom portion of the figure depicts
examples of the property editor, whereby arbitrary proper-
ties (as specified by an ontology) can be entered, such as
dietary requirements or names. Finally, the pane on the
right side of the screen shows the categorization pane and
an embedded collection view showing who else is indicated
to be a “Senior Vice President.”

In theory it would be possible to present the entire dis-
play in either the property editor or the graph editor, be-
cause both editors are general enough to support the entire
RDF data model. However, the figure illustrates that despite
the fact that “enjoys cuisines” and “manages” are both RDF
properties in the modeling sense, for the purposes of this
interface the choice of which para-
digm to use to display these proper-
ties is key to providing an intuitive
user experience.

Future Work

In this paper we have discussed how
views play a key role in giving users
intuitive representations of resources
present in RDF metadata as well as
several user interface paradigms that
utilize views to enable users to cre-
ate RDF metadata based on onto-
logical specifications. Together,
views and ontologies provide users
with methods of structuring the in-
formation they wish to input into
their systems. However, when a
user’s system encounters new infor-
mation that is written to a foreign

ontology, the system will need a way to retrieve the ontol-
ogy and any corresponding views. Similarly, when a user
wishes to express a relationship or talk about a resource that
is not known by the system, either the system must allow
the user to coin a URI to represent the new concept, or the
system must determine if others have already named this
concept.

Looking towards the future, we are investigating the use
of RDF-enabled search engines and shared repositories for
helping users locate concepts, people, properties, or even
views named in ontologies defined by others. Search en-

Figure 9: Screen from which user can select the type of resource
to descr ibe

Figure 8: Context menu of an RDF property
showing “ Mail this object” command

gines would accept descriptions of what is being sought,
such as a property whose label includes the text “ favorite
color” or a one line summary view for a hotel reservation,
and perform an RDF graph match against the metadata
available to it; in response a search engine might return
information on how to contact another server on the Seman-
tic Web to retrieve the actual information. A shared reposi-
tory would actually store the relevant information and re-
turn the information directly to a requesting client. Views
would be similarly resolvable under this scheme because
view characteristics are described in RDF.

Support for RDF search engines would come in two parts.
First, a user’s authoring tool would need to expose conven-
ient and intuitive mechanisms for connecting to search en-
gines and for incorporating new ontologies and views.
Figure 9 shows the screen in Haystack from which a user
can select the type of resource to describe. If the user does
not find the type needed, he or she can use the pane on the
right side of the screen to invoke a query to find an applica-
ble ontology. Haystack could then download the required
metadata and incorporate it.

Second, ontology editors would need to make it easy for
ontology designers to publish and publicize their ontologies
and views. Haystack contains built-in support for electronic
messaging, including an interface to POP3/SMTP e-mail
and the ability to extract portions of an RDF graph relevant
to a specific resource. Any resource in the system can be
sent to others via e-mail by right-clicking on a view of the
resource and selecting “Mail this object” from the context
menu (see Figure 8). Similarly, customized ontologies or
views could be e-mailed to search engines or shared reposi-
tories. We are currently constructing a shared repository
that can accept such e-mails and expose querying function-
ality.

While the solution outlined above will allow users to re-
use and share ontologies, it does not address the problem of
multiple ontologies specifying models of the same domain.
One possibility is to employ mappings or inference rules
that would allow the user’s environment to translate a re-
source’s metadata into whatever ontology is required. These
mappings or rules could be transported by means of RDF
search engines or shared repositories in much the same
fashion as views and ontologies as described.

Acknowledgements

This work was supported by the MIT-NTT collaboration,
the MIT Oxygen project, and IBM. The authors wish to
thank Jimmy Lin for his comments on drafts of this paper.

References

[1] Huynh, D., Karger, D., and Quan, D. Hay-
stack: A Platform for Creating, Organizing

and Visualizing Information Using RDF.
Semantic Web Workshop, The Eleventh
World Wide Web Conference 2002
(WWW2002).

[2] Resource Description Framework (RDF)
Model and Syntax Specification.
http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/.

[3] Berners-Lee, T., Hendler, J., and Lassila, O.
The Semantic Web. Scientific American,
May 2001.

[4] Handschuh, S., Staab, S., and Maedche, A.
CREAM—creating relational metadata with
a component-based ontology-driven annota-
tion framework. Proceedings of K-CAP 2001,
October 2001.

[5] Pietriga, E. IsaViz.
http://www.w3.org/2001/11/IsaViz/.

[6] Eriksson, H., Fergerson, R., Shahar, Y., and
Musen, M. Automatic Generation of Ontol-
ogy Editors. Proceedings of the 12th Banff
Knowledge Acquisition Workshop, 1999.

[7] Shneiderman, B. Direct manipulation for
comprehensible, predictable and controllable
user interfaces. Proceedings of IUI 1997.

[8] Lansdale, M. The Psychology of Personal
Information Management. Applied Ergonom-
ics, vol. 19, no. 1, 1988, pages 55–66.

[9] Bechhofer, S., Horrocks, I., Goble, C., Ste-
vens, R. OilEd: a Reason-able Ontology Edi-
tor for the Semantic Web. Proceedings of
KI2001, Joint German/Austrian conference
on Artificial Intelligence, Springer-Verlag
LNAI, vol. 2174, pages 396–408.

[10] Distributed Systems Technology Centre Re-
source Discovery Unit. Reggie—The Meta-
data Editor. http://metadata.net/dstc/.

[11] Open Directory Project. http://dmoz.org/.

