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Abstract 
XML Declarative Description (XDD) theory employs 
XML’s nested tree structure as its underlying data structure 
and Declarative Description theory as a framework to 
enhance its expressiveness. It enables direct representation 
of data items, encoded in XML applications, and extends 
their expressiveness by materializing succinct and uniform 
representation of implicit information, integrity constraints, 
conditional relationships and axioms. With the aim of 
enhancing XDD’s expressive power, this paper presents its 
extension with a well-defined mechanism for formulation of 
negative constraints (or negation). In addition, the 
formulation is employed to treat arbitrary XML first-order 
formulae in terms of corresponding XML first-order logical 
constraints (FLCs)special kind of constraints which 
comprise XML expressions and logical symbols: ¬, ∧, ∨, 
⇒, ∀ and ∃. Despite its expressiveness, XDD retains precise 
and well-defined declarative semantics. It achieves sound, 
efficient and flexible computation by means of Equivalent 
Transformation (ET)a new computational model, based 
on semantic-preserving transformations. Basic ET rules for 
manipulation and reasoning with negative constraints are 
developed and certain examples illustrated. 

1. Introduction  

XMLa description format for encoding and exchange of 
structured data and documents on the Weblacks a com-
putational mechanism and expressive power by not allow-
ing uniform expression of domain knowledge, axioms, 
conditional relationships and constraints. Important 
aproaches to the development of XML-based information 
representation by enhancement of XML’s expressiveness 
and provision of an efficient computational mechanism can 
be classified based on the three main features: 
 Document- and data-structure-based: Approaches in 

this category are concerned with structural modeling of 
XML documents by means of various data-structure 
techniques such as trees, graphs (Abiteboul, Buneman 
and Suciu 2000) and hedge automata (Murata 1995; 
Murata 1997), which view a document as a tree, a graph 

or a hedge, respectively. However, they only provide 
mechanisms to define certain forms of structural 
relationships and constraints, while lack a facility to 
specify rules, conceptual relationships and axioms. In 
addition, queries about implicit information are not yet 
supported, since their sole querying mechanisms are 
based on structural and pattern matching. 
 Rule-based: There exist several XML-based rule 

languages, developed for various purposes and applica-
tions, e.g., BRML (Grosof, Labrou and Chan 1999) and 
XRML (Lee and Sohn 2002). Most, if not all, of these 
languages are mere XML encoding of particular, exist-
ing logic programming and knowledge representation. 
Although they extend XML’s capabilities by incorpora-
tion of rule-expression ability and a reasoning mecha-
nism, their expressiveness is still limited by their 
inability to directly represent arbitrary XML elements. 
Extra tasks of schema and data conversions have to be 
performed to eliminate the mismatch in encoding 
between the rules and the documents to be processed. 
Furthermore, these rule languages lack theoretical or 
semantic foundations, unless they are translated back 
into their original language formalisms.  
 Ontology-based: Major, current ontology-based markup 

languages, e.g., DAML (Hendler and McGuinness 
2000), extend RDF (Lassila and Swick 1999) and RDF 
Schema (Brickley and Guha 2000) by providing further 
support for modeling ontologies with well-defined 
semantics and reasoning services. However, they still 
lack capabilities beyond those predefined primitives for 
definition of arbitrary ontological axioms. Moreover, 
their semantics involves mapping of their modeling 
primitives onto corresponding representations in a 
particular logical theory followed by corresponding 
determination of their semantics.  

In summary, all these approaches require additional 
formalisms with definitions of semantics or specification of 
relationships and constraints.  



XML Declarative Description (XDD) theory (Wuwongse 
et al. 2001; Wuwongse et al. 2003) is proposed with 
emphasis on the development of an XML-based knowledge 
representation, which provides in a single formalism a 
simple, yet expressive mechanism for succinct and uniform 
representation of explicit and implicit information, appli-
cation axioms and constraints. It exploits XML’s bare syn-
tax and enhances XML’s expressiveness by means of 
Declarative Description theory (Akama 1993; Akama, 
Shimitsu and Miyamoto 1998). XDD’s basic modeling 
elements are ordinary XML elements, which can readily be 
used to represent explicit complex entities and their rela-
tionships in a real application domain. Moreover, it extends 
this capability of ordinary XML elements by additionally 
allowing representation of implicit complex entities as well 
as their classes, relationships, rules and constraints in terms 
of XML expressions—a generalization of XML elements 
with variables—and constrained XML clauses. An XDD 
description is formulated as a set of ordinary XML 
elements, XML expressions with variables and XML 
clauses. Its declarative semantics is formally defined as a 
set of ordinary XML elements which are directly described 
by or derivable from the description itself. 

This paper enhances the expressive power of normal 
XDD descriptions by generalizing the concept of ordinary 
XML constraints into referential XML constraints. This 
allows an XDD description to refer to other XDD descrip-
tions in order to represent/enforce (higher-order) complex 
relations and restrictions. The meaning of a given referen-
tial constraint is formally defined on the basis of the 
meaning of its referred descriptions.  

Appropriate definition of negative constraints, formal-
ized as a referential constraints, yields a well-defined 
mechanism for formulation of complex statements which 
can declaratively describe negative information or nega-
tion. Other types of referential constraints for capturing 
particular relations among XDD descriptions can also be 
devised. Set-of constraint (Akama et al. 2002), for instance, 
presents another significant constraint useful for defining 
set construction, set manipulation and aggregate functions. 

Since XDD focuses on information/knowledge repre-
sentation, in order to provide a concise and expressive lan-
guage with precise and well-defined semantics, its under-
lying representation scheme is separated from its computa-
tional mechanism. It achieves efficient manipulation of and 
reasoning with XDD descriptions by employment of 
Equivalent Transformation (ET) (Akama, Shimitsu and 
Miyamoto 1998) computational paradigm.  

The fundamental concepts of XDD theory recalled in 
Sect. 2 are formally extended with referential constraints in 
Sect. 3. Their declarative semantics and its employment to 
formalize XDD descriptions with negative constraints are 
also given. Sect. 4 presents their computational mechanism 
by means of ET paradigm and devises basic ET rules for 
negative constraints. Founded on the developed theory, 
Sect. 5 demonstrates its application to represent and reason 
about arbitrary first-order logical constraints. Sect. 6 
concludes and presents further research direction.  

2. XDD: An Informal Review 

XDD extends ordinary, well-formed XML elements by 
incorporation of variables for an enhancement of 
expressiveness and representation of implicit information 
into so-called XML expressions. Ordinary XML elements 
(variable-free XML expressions) are called ground XML 
expressions. Every component of an XML expression can 
contain variables, e.g., its expression or a sequence of sub-
expressions (E-variables), tag names or attribute names (N-
variables), strings or literal contents (S-variables), pairs of 
attributes and values (P-variables) and some partial struc-
tures (I-variables). Every variable is prefixed by ‘$T:’, 
where T denotes its type. For example, $S:value and 
$E:expression are S- and E-variables, which can be special-
ized into a string or a sequence of XML expressions, 
respectively. The data structure and specialization behavior 
of XML expressions are characterized by a mathematical 
abstraction 〈AX, GX, SX, µX〉, called XML specialization 
system, where  
 AX is the set of all XML expressions,  
 GX is the subset of AX comprising all ground XML 

expressions, 
 SX is the set of XML specializations, each of which 

specifies a (possibly null) sequence of variables to 
be specialized and their specializing values/patterns,  
 µX is the specialization operator which determines, 

for each XML specialization θ in SX, the change of 
an XML expression in AX caused by θ. 

Unless confusion may arise, the application of a 
specialization θ to an XML expression a by the operator µX, 
formally denoted by µXθ(a), will be represented as aθ. 

Basically, objects and their simple relationships are 
explicitly represented as ground XML expressions, while a 
more complex and possibly implicit one is modeled by an 
XML clause C of the form: H ← B1, …, Bn, where n ≥ 0, 
H is an XML expression, and Bi is an XML expression or 
an XML constraint. H is called the head and {B1, …, Bn} 
the body of the clause. When its body is the empty set, C 
will be referred to as an XML unit clause and the symbol 
← is often omitted; hence, an XML element or document 
is mapped directly onto a ground XML unit clause. 

An XML constraint has the form φ(a1, …, an), where  
n > 0, φ is a constraint predicate and ai is an XML 
expression. The satisfaction (truth or falsity) of a ground 
constraint is predetermined. When the context is clear, 
some constraints will be represented using infix notation. 
For instance, [$S:salary > 10000] and [$S:bonus := $S:salary * 
2] represent the constraints GT($S:salary, 10000) and 
Mul($S:salary, 2, $S:bonus), respectively. 

An XDD description is a set of XML clauses. Intuitively, 
given an XDD description P, its meaning denoted by 
M(P) is the set of all XML elements which are directly 
described by or are derivable from the unit and non-unit 
clauses in P. These elements are surrogates of real, 
tangible or intangible objects or their relationships in the 
domain of interest, modeled by the description P. 



Example 1 The XDD description XDB of Fig. 1-a 
presents an example of modeling an RDF/XML database of 
a simple human resource management application. It 
comprises four unit clauses E1 – E4, representing XML 
elements in the database, and two non-unit clauses:C1 and 
C2, formalizing application axioms for the concepts Senior-
Staff and DepartmentWithSeniorStaff. C1 defines that if X is a 
Staff whose salary is more than 10000, then X is regarded as 
a SeniorStaff and will receive a double-salary bonus. C2 
defines that a department $S:dept is a DepartmentWithSenior-
Staff if there is a SeniorStaff working for that department. 
The meaning of XDB is the set of XML elements which 
are directly described by the unit clauses, i.e., the elements 
E1 – E4, together with those which are deducible from the 
database, i.e., the elements E5 and E6 of Fig. 1-b.      

3. Referential XDD Descriptions 

Here, XDD descriptions will be extended with the ability to 
represent referential XML constraints. In essence, 
referential constraints generalize the concept of ordinary 
XML constraints by inclusion of a facility for referring to 
other XDD descriptions, allowing representation of 
(higher-order) relations or restrictions. The meaning of a 
given referential constraint is determined based on the 
meanings of its referred descriptions. Thus, by inclusion of 
referential constraints in the clause’s body, an XML clause 
can additionally represent/enforce complex relations/ 
restrictions, the truth or falsity of which is evaluated 
according to the meaning of particular XDD descriptions.  

The definitions of XML constraints, XML clauses and 
XDD descriptions are redefined: 

Definition 1 XML constraints, XML clauses and XDD 
descriptions are defined inductively by: 

1. An XML constraint is an (n+m+1)-tuple  
〈φ, a1, …, an, Q1, …, Qm〉, where  

–  n, m ≥ 0,  
– φ is a mapping from G1 × … × Gn × Gn+1 × 
… × Gn+m to {true, false}, 
where Gi is GX for each 1 ≤ i ≤ n, and 2GX for 
each n+1 ≤ i ≤ n+m, 

– ai is an XML expression in GX,  
– Qi is an XDD description.  

2. An XML clause is a formula (H ← B1, …, Bn), where 
n ≥ 0, H is an XML expression, and Bi is either an 
XML expression or an XML constraint.  

3. An XDD description is a set of XML clauses.      

An XML constraint 〈φ, a1, …, an, Q1, …, Qm〉 is 
called a simple XML constraint iff it comprises solely XML 
expressions (i.e., m = 0), and called a referential XML 
constraint iff it refers to some XDD descriptions (i.e., m ≥ 
1). Moreover, it is a ground XML constraint iff it 
comprises only ground XML expressions and XDD 
descriptions. A clause C is a ground clause iff it comprises 
only ground XML expressions and ground XML 

E1:  <hr:Staff  rdf:about="john"> 
   <hr:name>John Smith</hr:name> 
   <hr:education>Doctor</hr:education> 
   <hr:department  rdf:resource="sales"/> 
   <hr:position>Sales Manager</hr:position> 
   <hr:salary>12000</hr:salary> 
  </hr:Staff> 

E2: <hr:Staff  rdf:about="jack"> 
   <hr:name>Jack White</hr:name> 
   <hr:education>Master</hr:education> 
   <hr:department  rdf:resource="computer"/> 
   <hr:position>Engineer</hr:position> 
   <hr:salary>7000</hr:salary> 
  </hr:Staff> 

E3:  <hr:Department  rdf:about="sales"> 
   <hr:name>Sales Department</hr:name> 
   <hr:telephone>750 2255<hr:telephone> 
  </hr:Department> 

E4:  <hr:Department  rdf:about="computer"> 
   <hr:name>Computer Department</hr:name> 
   <hr:telephone>750 2277<hr:telephone> 
  </hr:Department> 

C1:  <hr:SeniorStaff  rdf:about=$S:X> 
   <hr:salary>$S:salary</hr:salary> 
   <hr:bonus>$S:bonus</hr:bonus> 
   $E:Xproperties 
  </hr:SeniorStaff> 
    ←  <hr:Staff  rdf:about=$S:X> 
       <hr:salary>$S:salary</hr:salary> 
       $E:Xproperties 
      </hr:Staff>, 
      [$S:salary > 10000], 
      [$S:bonus := $S:salary * 2]. 

C2:  <hr:DepartmentWithSeniorStaff  rdf:about=$S:dept> 
   $E:deptProperties 
  </hr:DepartmentWithSeniorStaff> 
    ← <hr:Department  rdf:about=$S:dept> 
       $E:deptProperties 
      </hr:Department>, 
      <hr:SeniorStaff  rdf:about=$S:staff> 
       <hr:department  rdf:resource=$S:dept/> 
       $E:staffProperties 
       </hr:SeniorStaff>. 
a. An XDD description XDB = {E1, E2, E3, E4, C1, C2} 

E5:  <hr:SeniorStaff  rdf:about="john"> 
   <hr:name>John Smith</hr:name> 
   <hr:education>Doctor</hr:education> 
   <hr:department  rdf:resource="sales"/> 
   <hr:position>Sales Manager</hr:position> 
   <hr:salary>12000</hr:salary> 
   <hr:bonus>24000</hr:bonus> 
  </hr:SeniorStaff> 

E6:  <hr:DepartmentWithSeniorStaff  rdf:about="sales"> 
   <hr:name>Sales Department</hr:name> 
   <hr:telephone>750 2255<hr:telephone> 
  </hr:DepartmentWithSeniorStaff> 

b. XML elements derived from XDB  
and included in M(XDB) 

Figure 1. An XDD description example and its meaning 



constraints. The head of C is denoted by head(C) and the 
set of all XML expressions and XML constraints in the 
body of C by object(C) and con(C), respectively. Let 
body(C)=object(C) ∪ con(C). Given θ ∈ SX, application 
of θ to a clause (H ← B1, …, Bn) yields the clause (Hθ ← 
B1θ, …, Bnθ), and to a constraint 〈φ, a1,…, an, Q1,…, Qm〉 
the constraint 〈φ, a1θ, …, anθ, Q1, …, Qm〉. 

Employing the formalized concepts, a negative 
constraint―one of the most important referential XML 
constraints―will be given for representation of negative 
information or negation.  

Definition 2 A negative constraint has the form  

〈fnot, a, Q〉, 

where  –  fnot is a mapping from GX × 2GX to {true, false} 
such that 

• fnot(g, G) = true   if g ∉ G,  
• fnot(g, G) = false   if g ∈ G, 

– a is an XML expression,  
– Q an XDD description.      

A constraint 〈fnot, a, Q〉 restricts that the expression a 
must not be true with respect to the description Q, i.e., a 
must not be included in the meaning of Q. In the sequel, 
such a constraint will be simply represented as [a ∉ 
M(Q)]. This formulation of negation is natural because it 
permits specification of negative information and its 
respective evaluation context.  

Example 2 By referring to the description XDB of Fig. 1, 
the following clause Cneg derives those departments with no 
SeniorStaff. 

Cneg: <DepartmentWithoutSeniorStaff   rdf:about=$S:dept> 
    $E:deptProperties 
   </DepartmentWithoutSeniorStaff> 
   ←  <hr:Department  rdf:about=$S:dept> 
      $E:deptProperties 
     </hr:Department>, 

     [<hr:DepartmentWithSeniorStaff  
       rdf:about=$S:dept> 
      $E:deptProperties 
      </hr:DepartmentWithSeniorStaff> ∉ M(XDB) ]. 

It simply specifies that a department $S:dept is a Department-
WithoutSeniorStaff if it is not a DepartmentWithSeniorStaff. The 
first XML expression in Cneg’s body finds a Department-
element from the database and the negative constraint 
specifies that such a department is not a DepartmentWith-
SeniorStaff with respect to the description XDB. Cneg’s head 
then derives that such a department is a DepartmentWithout-
SeniorStaff.      

Definition 3 The declarative semantics of an XDD 
description P, denoted by M(P), is defined inductively by: 
1. Given the meanings M(Q1), …, M(Qm) of XDD 

descriptions Q1, …, Qm, a ground constraint 〈φ, g1, …, 
gn, Q1, …, Qm〉 is a true XML constraint iff φ(g1, …, 
gn, M(Q1), …, M(Qm)) = true. Define the set Tcon 
as the set of all true ground XML constraints, i.e.:  

Tcon = {〈φ, g1, …, gn, Q1, …, Qm〉  |  gi ∈ GX,  
Qi is an XDD description,  
φ(g1,…,gn, M(Q1),…,M(Qm))= true }. 

2. The meaning M(P) of the description P is the set of 
ground XML expressions defined by: 

M(P) = U
∞

=1n

[TP]n(∅), 

where  –  TP
1(∅) = TP(∅), 

– [TP]n(∅) = TP([TP]n-1(∅)) for each n > 1, 
– the mapping TP: 2GX → 2GX is defined by: 

For each G ⊂ GX, a ground XML expression g is 
contained in TP(G) iff there exist an XML clause C ∈ 
P and an XML specialization θ ∈ SX such that Cθ is a 
ground clause with the head g, all the XML expressions 
and constraints in the body of which belong to G and 
Tcon, respectively, i.e.: 

TP(G) = { head(Cθ) | C ∈ P,  θ ∈ SX,   
Cθ is a ground clause, 
object(C) ⊂ G,  con(C) ⊂ Tcon}.  

From its definition, one can yield that the meaning of a 
description is defined based on the meanings of its referred 
descriptions, and thus XDD descriptions with referential 
constraints must be stratified. Speaking intuitively, the 
meaning of P, i.e., M(P), is a set of all ground XML 
expressions which are directly described by and are 
derivable from the unit and the non-unit XML clauses in P.  

4. Computation Mechanism 

4.1. Equivalent Transformation 
Computation of XDD descriptions is carried out by 
employment of Equivalent Transformation (ET) (Akama, 
Shimitsu and Miyamoto 1998)a new, flexible and effi-
cient computational model which solves a given problem, 
described in an appropriate language, by simplifying it 
through repetitive application of (semantically-)equivalent 
transformation rules. Let P1 be an XDD description which 
models a particular application or problem. The meaning of 
P1, i.e., M(P1), yields the set of XML elements which rep-
resent concepts, instances and interrelationships of these 
objects in the application domain, and hence yields the 
solutions to the formulated problem. This new computation 
paradigm applies ET rules (procedural rewriting rules) in 
order to successively transform P1 into P2, P3, etc., while 
maintaining the conditions M(P1) = M(P2) = M(P3) = …, 
until the desirable description Pn, which is simpler but 
equivalent description from which the answers to the given 
problem specification can be drawn easily and directly, is 
obtained. More precisely, P1 is successively transformed 
until it becomes the description Pn, where Pn holds only 
XML unit clauses and M(P1) = M(Pn). Hence, the XML 
elements directly described by these unit clauses in Pn 



readily represent the answers to the problem described by 
P1. Moreover, since only ET rules are applied in each 
transformation step, the meanings of the descriptions are 
maintained and the correctness of the computation is 
always guaranteed. The unfolding transformationthe 
fundamental computational mechanism in logic program-
mingpresents an example of ET rules. There exist many 
other ET rules which reflect or exploit specific application 
domain knowledge and data structure, and thus could lead 
to more efficient computation. 

Recall that an XDD description can refer to other 
descriptions by means of referential XML constraints. 
These descriptions, thus, form a directed tree structure, 
where a description is a parent node of those descriptions it 
refers to, and it is a child node of those descriptions 
referring to it. Computation of each description is carried 
out in its own world in parallel, where a child node 
(description) is computed in a child world and a parent 
node is computed in a parent world. Information can also 
be propagated to/from the parent and child worlds. 

4.2 XML Equivalent Transformation 
Founded on the XDD theory and the ET paradigm, XML 
Equivalent Transformation (XET) engine (Anutariya et al. 
2002; Anutariya, Wuwongse and Wattanapailin 2002) has 
been developed for direct and succinct manipulation of and 
reasoning with XML expressions without a necessity for 
data conversion. An XET program comprises a set of XET 
rules and a set of XML elements/documents, regarded as 
the program’s data or facts. These rules and facts are pre-
pared (semi-automatically) according to the specification 
provided by the given XDD description. In general, given 
an XDD description modeling a problem in a particular 
domain, a set of XET rules and facts for implementing such 
a problem can be easily obtained. Thus, XDD descriptions 
are viewed as XET program specifications. Additional 
XET rules for improvement of computation efficiency can 
also be devised based on certain specific characteristics and 
properties of application data and rules. The general form 
of an XET rule is 

  Head, {Condition} →  {Execution1}, Body1; 
           →  {Execution2}, Body2; 
               … 
           →  {Executionn}, Bodyn; 
It specifies backward-chaining-like computation and reads: 
if the pattern of XML expressions specified by the Head of 
a rule matches with the target XML expression and the 
Condition is satisfied, then the n bodies fire simulta-
neously, i.e., the built-in or user-defined operations speci-
fied in each Executioni are performed, and the list of XML 
expressions specified in the Bodyi replace the target 
expression. More precisely, given an XML clause C: H ← 
B, B1, …, Bm, such an XET rule is applicable to the target 
expression B of the given clause C iff there exists a spe-
cialization θ such that Headθ = B (i.e., the target expression 

B must be more specific than the pattern specified by 
Head) and Conditionθ is true (by a given evaluator). When 
applied, the rule transforms the clause C into (at most) n 
clauses: C1, …, Cn. Each clause Ci is obtained from C by 
executing Executioniθ and replacing the target expression 
B of C by the XML expression(s) specified by Bodyiθ. 
Example 3 Fig. 2 presents an XET program XDB.xet for 
reasoning with the XML database XDB of Fig. 1. To 
demonstrate the XET execution mechanism, consider a 
query which simply returns names of all SeniorStaff working 
for the sales department, formulated as the clause: 

 <answer>$S:name</answer> 
   ←  <hr:SeniorStaff  rdf:about=$S:X> 
      <hr:name>$S:name</hr:name> 
      <hr:department rdf:resource="sales"/> 
      $E:properties 
     </hr:SeniorStaff>. 

Execution of such a query against the database XDB is 
carried out by transforming the query clause using the 
implemented rule and facts in XDB.xet. Firstly, the SeniorStaff 
rule (Lines 27–52) is applied because the hr:SeniorStaff-
expression in the query clause’s body can match with the 
head (Lines 28–32) of that rule. That is, the built-in 
operation xet:Unify (Lines 34–43) is executed and the 
hr:SeniorStaff-expression in the query clause’s body is 
replaced by the expressions specified in the rule’s body,  
i.e.: hr:Staff, xet:GT and xet:Mul (Lines 44–50). Hence, the 
clause is transformed into:  

<answer>$S:name</answer> 
  ←  <hr:Staff  rdf:about=$S:X> 
      <hr:name>$S:name</hr:name> 
      <hr:department rdf:resource="sales"/> 
      <hr:salary>$S:salary</hr:salary> 
      $E:StaffProperties 
    </hr:Staff>, 
    <xet:GT  number1=$S:salary  number2="10000"/>, 
    <xet:Mul  number=$S:salary  multiplier="2"   
         result=$S:bonus/>. 

Since the hr:Staff-expression in the clause’s body can be 
matched successfully with the first fact (Lines 4–10) in the 
program, such an expression is removed and the clause is 
then transformed into: 

<answer>John Smith</answer> 
  ←  <xet:GT  number1="12000"  number2="10000"/>, 
    <xet:Mul  number="12000"  multiplier="2"   
         result=$S:bonus/>. 

After the execution of the built-in operations xet:GT and 
xet:Mul, the answer to the query is obtained: 

<answer>John Smith</answer> ←  . 

That is, John Smith is the only SeniorStaff working for the 
sales department.      

 4.3. Rules for Negative Constraints 
This section defines three basic ET rules for computation 
of XDD descriptions with negative constraints.  
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<xet:Program  xmlns:xet="http://kr.cs.ait.ac.th/XET"   
   xmlns:hr="http://kr.cs.ait.ac.th/hr-schema.daml"> 
 <xet:Fact> 
  <hr:Staff  rdf:about="john"> 
   <hr:name>John Smith</hr:name> 
   <hr:education>Doctor</hr:education> 
   <hr:department  rdf:resource="sales"/> 
   <hr:position>Sales Manager</hr:position> 
   <hr:salary>12000</hr:salary> 
  </hr:Staff> 
  <hr:Staff  rdf:about="jack"> 
   <hr:name>Jack White</hr:name> 
   <hr:education>Master</hr:education> 
   <hr:department  rdf:resource="computer"/> 
   <hr:position>Engineer</hr:position> 
   <hr:salary>7000</hr:salary> 
  </hr:Staff> 
  <hr:Department  rdf:about="sales"> 
   <hr:name>Sales Department</hr:name> 
   <hr:telephone>750 2255<hr:telephone> 
  </hr:Department> 
  <hr:Department  rdf:about="computer"> 
   <hr:name>Computer Department</hr:name> 
   <hr:telephone>750 2277<hr:telephone> 
  </hr:Department> 
 </xet:Fact> 
 <xet:Rule name="SeniorStaff"> 
  <xet:Head> 
   <hr:SeniorStaff  rdf:about="Svar_X"> 
    Evar_SeniorStaffProperties 
   </hr:SeniorStaff> 
  </xet:Head> 
  <xet:Body> 
   <xet:Unify> 
    <xet:Expression> 
     Evar_SeniorStaffProperties 
    </xet:Expression> 
    <xet:Expression> 
     <hr:salary>Svar_salary</hr:salary> 
     <hr:bonus>Svar_bonus</hr:bonus> 
     Evar_StaffProperties 
    </xet:Expression> 
   </xet:Unify> 
   <hr:Staff  rdf:about="Svar_X"> 
    <hr:salary>Svar_salary</hr:salary> 
    Evar_StaffProperties 
   </hr:Staff> 
   <xet:GT  number1="Svar_salary"  number2="10000"/> 
   <xet:Mul number="Svar_salary" multiplier="2"  
       result="Svar_bonus"/> 
  </xet:Body> 
 </xet:Rule> 
 <xet:Rule name="DepartmentWithSeniorStaff"> 
  <xet:Head> 
   <hr:DepartmentWithSeniorStaff rdf:about="Svar_dept">
    Evar_deptProperties 
   </hr:DepartmentWithoutSeniorStaff> 
  </xet:Head> 
  <xet:Body> 
   <hr:Department  rdf:about="Svar_dept"> 
    Evar_deptProperties 
   </hr:Department> 
   <hr:SeniorStaff  rdf:about="Svar_staff"> 
    <hr:department  rdf:resource="Svar_dept"/> 
    Evar_staffProperties 
   </hr:SeniorStaff>. 
  </xet:Body> 
 </xet:Rule> 
</xet:Program> 

 Figure 2. XET program XDB.xet 

 Throughout this section, let P, Q, Q′ and Q″ be XDD 
descriptions, C and C 

′ be XML clauses, and a and b be 
XML expressions. Firstly, a transformation, which defines 
the starting point for processing negative constraints, is 
presented. It merges the expression a of a given negative 
constraint [a ∉ M(Q)] and its referred description Q into a 
new description Q′ = Q ∪ { <xet:NotRule>a</xet:NotRule> 
← a }, and then transforms the given constraint into 
[<xet:NotRule>a</xet:NotRule> ∉ M(Q′)]. Thus, closely 
interrelated computation with the expression a and the 
referred description Q becomes possible by equivalent 
transformation of the description Q′. 

ET Rule 1 (Merging of Object) Let 

– Q′ = Q ∪ {<xet:NotRule>a</xet:NotRule> ← a}, 
– C:  (H ← B1, …, Bi, [a ∉ M(Q)], Bi+1, …, Bn), 
– C 

′:  (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule> 
∉ M(Q′)], Bi+1, …, Bn). 

Then, M(P ∪ {C}) = M(P ∪ {C 
′}), and P ∪ {C} can be 

transformed equivalently into P ∪ {C 
′}.      

Next, let Q′ allow equivalent transformation into Q′′ ∪ 
{<xet:NotRule>b</xet:NotRule> ← }. Hence, the negative 
constraint [<xet:NotRule>a</xet:NotRule> ∉ M(Q′)] can be 
replaced by [a ∉ rep(b)] and [<xet:NotRule>a</xet:NotRule> 
∉ M(Q′′)], where [a ∉ rep(b)] represents a constraint 
which will be true iff a is an XML element and a is not a 
ground instance of b, i.e., there must not exist θ ∈ SX such 
that a = bθ. This process is materialized by the following 
transformation: 

ET Rule 2 (Lifting Transformation) Let 

– Q′ = Q′′ ∪ {<xet:NotRule>b</xet:NotRule> ← }, 
– C:  (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule> 

∉ M(Q′)], Bi+1, …, Bn), 
– C 

′:  (H ← B1, …, Bi, [a ∉ rep(b)], 
[<xet:NotRule>a</xet:NotRule>∉ M(Q′′)],  
Bi+1, …, Bn),  

where [a ∉ rep(b)] is a true constraint iff a is an 
XML element which is not a ground instance of b, i.e., 
there is no θ ∈ SX such that a = bθ. 

Then, M(P ∪ {C}) = M(P ∪ {C 
′}), and P ∪ {C} can be 

transformed equivalently into P ∪ {C 
′}.      

If the referred description Q′ of a constraint 
[<xet:NotRule>a</xet:NotRule> ∉ M(Q′)] cannot be trans-
formed equivalently into a description Q′′ ∪ 
{<xet:NotRule>b</xet:NotRule> ← }, such a constraint can 
be eliminated from a clause. This is implemented by: 

ET Rule 3  (Elimination of Negative Constraint) Let 

– Q′ be a description which cannot be transformed 
equivalently into a description  
Q′′ ∪ {<xet:NotRule>b</xet:NotRule> ← }, 

– C:  (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule> 
∉ M(Q′)], Bi+1, …, Bn), 



– C 
′:  (H ← B1, …, Bi, Bi+1, …, Bn). 

Then, M(P ∪ {C}) = M(P ∪ {C 
′}), and P ∪ {C} can be 

transformed equivalently into P ∪ {C 
′}.      

Example 4 Based on the presented three rules for 
negative constraints and the implemented rules and facts of 
XDB.xet (Fig. 2), the computation of the query Cneg 
(Example 2), which finds departments with no SeniorStaff, is 
shortly demonstrated. 

Step 1:  The original problem is formalized as: 

P = {Cneg: <DepartmentWithoutSeniorStaff  rdf:about=$S:dept> 
      $E:deptProperties 
     </DepartmentWithoutSeniorStaff> 
     ← <hr:Department  rdf:about=$S:dept> 
          $E:deptProperties 
       </hr:Department>, 
       [<hr:DepartmentWithSeniorStaff   
         rdf:about=$S:dept> 
         $E:deptProperties 
       </hr:DepartmentWithSeniorStaff> ∉M(XDB)]} 

Step 2:  Transform the negative constraint in Cneg by ET 
Rule 1: 

P = {Cneg: <DepartmentWithoutSeniorStaff  rdf:about=$S:dept> 
      $E:deptProperties 
      </DepartmentWithoutSeniorStaff> 
     ← <hr:Department  rdf:about=$S:dept> 
         $E:deptProperties 
       </hr:Department>, 
       [<xet:NotRule> 
        <hr:DepartmentWithSeniorStaff   
          rdf:about=$S:dept> 
          $E:deptProperties 
        </hr:DepartmentWithSeniorStaff> 
        </xet:NotRule>  ∉ M(XDB′)] } 

XDB′ = XDB ∪ {<xet:NotRule> 
        <hr:DepartmentWithSeniorStaff   
         rdf:about=$S:dept> 
         $E:deptProperties 
        </hr:DepartmentWithSeniorStaff> 
        </xet:NotRule>  
        ←  <hr:DepartmentWithSeniorStaff   
           rdf:about=$S:dept> 
           $E:deptProperties 
          </hr:DepartmentWithSeniorStaff> } 

Step 3:  By applying the rules DepartmentWithSeniorStaff 
(Lines 27-51) and SeniorStaff (Lines 52-67) as well as 
unfolding with the facts (Lines 3-26) in XDB.xet, XDB′ can 
be equivalently transformed into: 

XDB′ = XDB ∪ {<xet:NotRule> 
        <hr:DepartmentWithSeniorStaff   
          rdf:about="sales"> 
         <hr:name>Sales Department</hr:name> 
         <hr:telephone>750 2255<hr:telephone> 
        </hr:DepartmentWithSeniorStaff> 
        </xet:NotRule>  ← } 

Step 4:  Because XDB′ comprises a unit clause with the 
xet:NotRule-expression in its head, ET Rule 2 is applied: 

P = {Cneg:<DepartmentWithoutSeniorStaff   rdf:about=$S:dept> 
      $E:deptProperties 
     </DepartmentWithoutSeniorStaff> 
     ← <hr:Department  rdf:about=$S:dept> 
        $E:deptProperties 
       </hr:Department>, 
        [<hr:Department  rdf:about=$S:dept> 
        $E:deptProperties 
         </hr:Department> ∉          
        rep(<hr:DepartmentWithSeniorStaff   
          rdf:about="sales"> 
           <hr:name>Sales Department</> 
           <hr:telephone>750 2255</> 
            </hr:DepartmentWithSeniorStaff>)] 
         [<xet:NotRule> 
         <hr:DepartmentWithSeniorStaff   
          rdf:about=$S:dept> 
          $E:deptProperties 
         </hr:DepartmentWithSeniorStaff> 
          </xet:NotRule>  ∉ M(XDB)] } 

Step 5:  Because XDB′ cannot be further transformed into 
a description comprising a unit clause with xet:NotRule-
expression in the head, ET Rule 3 is applied: 

P = {Cneg: <DepartmentWithoutSeniorStaff  rdf:about=$S:dept> 
      $E:deptProperties 
      </DepartmentWithoutSeniorStaff> 
     ← <hr:Department  rdf:about=$S:dept> 
         $E:deptProperties 
       </hr:Department>, 
       [<hr:Department  rdf:about=$S:dept> 
         $E:deptProperties 
        </hr:Department>  ∉          
         rep(<hr:DepartmentWithSeniorStaff   
          rdf:about="sales"> 
           <hr:name>Sales Department</> 
           <hr:telephone>750 2255</> 
          </hr:DepartmentWithSeniorStaff>)]} 

Step 6:  By unfolding the hr:Department-expression in 
Cneg’s body with the third and fourth facts of XDB.xet and by 
evaluating the constraint [a ∉ rep(b)] in the clause’s body, 
the description P can be equivalently transformed into: 

P = {Cneg:<DepartmentWithoutSeniorStaff   rdf:about="computer"> 
     <hr:name>Computer Department</hr:name> 
     <hr:telephone>750 2277<hr:telephone> 
     </DepartmentWithoutSeniorStaff> ←  } 

Since only semantic-preserving transformations are 
used in every step, the meaning of the transformed 
description P is preserved and the obtained answer: 
  <DepartmentWithoutSeniorStaff   rdf:about="computer"> 
   <hr:name>Computer Department</hr:name> 
   <hr:telephone>750 2277<hr:telephone> 
  </DepartmentWithoutSeniorStaff> 

is guaranteed to be correct.      

5. Extended XDD Descriptions with FLCs 

This section outlines an extension of XDD descriptions 
with the mechanism to express arbitrary first-order 
formulae. Such an expression is represented as a first-order 



logical constraint (FLC)a special kind of constraints 
which is composed of XML expressions and logical 
symbols: ¬, ∧, ∨, ⇒, ∀ and ∃. An FLC is defined as: 

1. An XML expression is an FLC. 
2. An XML constraint is an FLC. 
3. If F and G are FLCs, then so are ¬F, F ∧ G, F ∨ G 

and F ⇒ G. 
4. If F is an FLC and x is a variable, then (∀x F) and 

(∃x F) are FLCs. 
An XDD description with FLCs is then formalized as a set 
of extended XML clauses with FLCs. Each clause has the 
form H ← F, where the head H is an XML expression and 
the body F an FLC. Employing those transformation 
techniques developed in the first-order logic theory (Lloyd 
1987), extended XDD descriptions with FLCs can be 
straightforwardly transformed into equivalent XDD 
descriptions (with negative constraints) in a finite number 
of steps, and the meaning of a given description with FLCs 
is directly defined by means of its equivalent description. 

6. Conclusions 

The developed XDD theory with negative constraints 
yields a unified XML-based knowledge representation with 
sufficient expressive power to represent all XML applica-
tions, enhances their expressiveness and lets their intended 
meanings be determined directly. It provides more direct 
insight into XML data representation and manipulation, 
and facilitates means for uniform expression of explicit and 
implicit information, ontologies, constraints, negation and 
axioms by direct employment of XML elements as its basic 
language component. It is employed to model various 
applications such as constrained XML databases (Akama et 
al. 2002; Wuwongse et al. 2003), the Semantic Web 
(Anutariya et al. 2002; Suwanapong, Anutariya and 
Wuwongse 2002; Wuwongse et al. 2001) and UML 
diagrams (Nantajeewarawat et al.). Employment of the ET 
framework leads to computation with XDD by successive, 
equivalent transformation of a given description—a 
problem’s specification—into the desired one—a prob-
lem’s solution. Hence, the efficiency of the computation 
relies solely on the employed ET rules.  

XET engine (Anutariya et al. 2002; Anutariya, 
Wuwongse and Wattanapailin 2002), which integrates 
XML syntax, XDD representation style and ET mecha-
nism, is also available for direct and succinct manipulation 
of and reasoning with XDD descriptions. Its employment to 
implement various XML-, RDF- and DAML-based proto-
type systemssuch as an XML database system (Akama et 
al. 2002; Wuwongse et al. 2003), an intelligent, ontology-
enabled Semantic Web service system (Suwanapong, 
Anutariya and Wuwongse 2002) and e-business applica-
tions (Anutariya et al. 2002; Anutariya, Wuwongse and 
Wattanapailin 2002)helps demonstrate the viability and 
potential in real applications. Further work includes devel-
opment of more efficient ET rules specific for XML data 
structure as well as incorporation of basic built-in ET rules 
into the XET engine for dealing with FLC constraints. 
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