
XML Declarative Description with Negative Constraints

Chutiporn Anutariya1, Vilas Wuwongse2 and Kiyoshi Akama3

1
 Department of Telematics, Norwegian University of Science and Technology

7491 Trondheim, Norway
Chutiporn.Anutariya@item.ntnu.no

2 Computer Science & Information Management Program,
School of Advanced Technologies, Asian Institute of Technology

Pathumtani 12120, Thailand
vw@cs.ait.ac.th

3 Center for Information and Multimedia Studies,
Hokkaido University, Sapporo 060, Japan

akama@cims.hokudai.ac.jp

Abstract
XML Declarative Description (XDD) theory employs
XML’s nested tree structure as its underlying data structure
and Declarative Description theory as a framework to
enhance its expressiveness. It enables direct representation
of data items, encoded in XML applications, and extends
their expressiveness by materializing succinct and uniform
representation of implicit information, integrity constraints,
conditional relationships and axioms. With the aim of
enhancing XDD’s expressive power, this paper presents its
extension with a well-defined mechanism for formulation of
negative constraints (or negation). In addition, the
formulation is employed to treat arbitrary XML first-order
formulae in terms of corresponding XML first-order logical
constraints (FLCs)special kind of constraints which
comprise XML expressions and logical symbols: ¬, ∧, ∨,
⇒, ∀ and ∃. Despite its expressiveness, XDD retains precise
and well-defined declarative semantics. It achieves sound,
efficient and flexible computation by means of Equivalent
Transformation (ET)a new computational model, based
on semantic-preserving transformations. Basic ET rules for
manipulation and reasoning with negative constraints are
developed and certain examples illustrated.

1. Introduction

XMLa description format for encoding and exchange of
structured data and documents on the Weblacks a com-
putational mechanism and expressive power by not allow-
ing uniform expression of domain knowledge, axioms,
conditional relationships and constraints. Important
aproaches to the development of XML-based information
representation by enhancement of XML’s expressiveness
and provision of an efficient computational mechanism can
be classified based on the three main features:
 Document- and data-structure-based: Approaches in

this category are concerned with structural modeling of
XML documents by means of various data-structure
techniques such as trees, graphs (Abiteboul, Buneman
and Suciu 2000) and hedge automata (Murata 1995;
Murata 1997), which view a document as a tree, a graph

or a hedge, respectively. However, they only provide
mechanisms to define certain forms of structural
relationships and constraints, while lack a facility to
specify rules, conceptual relationships and axioms. In
addition, queries about implicit information are not yet
supported, since their sole querying mechanisms are
based on structural and pattern matching.
 Rule-based: There exist several XML-based rule

languages, developed for various purposes and applica-
tions, e.g., BRML (Grosof, Labrou and Chan 1999) and
XRML (Lee and Sohn 2002). Most, if not all, of these
languages are mere XML encoding of particular, exist-
ing logic programming and knowledge representation.
Although they extend XML’s capabilities by incorpora-
tion of rule-expression ability and a reasoning mecha-
nism, their expressiveness is still limited by their
inability to directly represent arbitrary XML elements.
Extra tasks of schema and data conversions have to be
performed to eliminate the mismatch in encoding
between the rules and the documents to be processed.
Furthermore, these rule languages lack theoretical or
semantic foundations, unless they are translated back
into their original language formalisms.
 Ontology-based: Major, current ontology-based markup

languages, e.g., DAML (Hendler and McGuinness
2000), extend RDF (Lassila and Swick 1999) and RDF
Schema (Brickley and Guha 2000) by providing further
support for modeling ontologies with well-defined
semantics and reasoning services. However, they still
lack capabilities beyond those predefined primitives for
definition of arbitrary ontological axioms. Moreover,
their semantics involves mapping of their modeling
primitives onto corresponding representations in a
particular logical theory followed by corresponding
determination of their semantics.

In summary, all these approaches require additional
formalisms with definitions of semantics or specification of
relationships and constraints.

XML Declarative Description (XDD) theory (Wuwongse
et al. 2001; Wuwongse et al. 2003) is proposed with
emphasis on the development of an XML-based knowledge
representation, which provides in a single formalism a
simple, yet expressive mechanism for succinct and uniform
representation of explicit and implicit information, appli-
cation axioms and constraints. It exploits XML’s bare syn-
tax and enhances XML’s expressiveness by means of
Declarative Description theory (Akama 1993; Akama,
Shimitsu and Miyamoto 1998). XDD’s basic modeling
elements are ordinary XML elements, which can readily be
used to represent explicit complex entities and their rela-
tionships in a real application domain. Moreover, it extends
this capability of ordinary XML elements by additionally
allowing representation of implicit complex entities as well
as their classes, relationships, rules and constraints in terms
of XML expressions—a generalization of XML elements
with variables—and constrained XML clauses. An XDD
description is formulated as a set of ordinary XML
elements, XML expressions with variables and XML
clauses. Its declarative semantics is formally defined as a
set of ordinary XML elements which are directly described
by or derivable from the description itself.

This paper enhances the expressive power of normal
XDD descriptions by generalizing the concept of ordinary
XML constraints into referential XML constraints. This
allows an XDD description to refer to other XDD descrip-
tions in order to represent/enforce (higher-order) complex
relations and restrictions. The meaning of a given referen-
tial constraint is formally defined on the basis of the
meaning of its referred descriptions.

Appropriate definition of negative constraints, formal-
ized as a referential constraints, yields a well-defined
mechanism for formulation of complex statements which
can declaratively describe negative information or nega-
tion. Other types of referential constraints for capturing
particular relations among XDD descriptions can also be
devised. Set-of constraint (Akama et al. 2002), for instance,
presents another significant constraint useful for defining
set construction, set manipulation and aggregate functions.

Since XDD focuses on information/knowledge repre-
sentation, in order to provide a concise and expressive lan-
guage with precise and well-defined semantics, its under-
lying representation scheme is separated from its computa-
tional mechanism. It achieves efficient manipulation of and
reasoning with XDD descriptions by employment of
Equivalent Transformation (ET) (Akama, Shimitsu and
Miyamoto 1998) computational paradigm.

The fundamental concepts of XDD theory recalled in
Sect. 2 are formally extended with referential constraints in
Sect. 3. Their declarative semantics and its employment to
formalize XDD descriptions with negative constraints are
also given. Sect. 4 presents their computational mechanism
by means of ET paradigm and devises basic ET rules for
negative constraints. Founded on the developed theory,
Sect. 5 demonstrates its application to represent and reason
about arbitrary first-order logical constraints. Sect. 6
concludes and presents further research direction.

2. XDD: An Informal Review

XDD extends ordinary, well-formed XML elements by
incorporation of variables for an enhancement of
expressiveness and representation of implicit information
into so-called XML expressions. Ordinary XML elements
(variable-free XML expressions) are called ground XML
expressions. Every component of an XML expression can
contain variables, e.g., its expression or a sequence of sub-
expressions (E-variables), tag names or attribute names (N-
variables), strings or literal contents (S-variables), pairs of
attributes and values (P-variables) and some partial struc-
tures (I-variables). Every variable is prefixed by ‘$T:’,
where T denotes its type. For example, $S:value and
$E:expression are S- and E-variables, which can be special-
ized into a string or a sequence of XML expressions,
respectively. The data structure and specialization behavior
of XML expressions are characterized by a mathematical
abstraction 〈AX, GX, SX, µX〉, called XML specialization
system, where
 AX is the set of all XML expressions,
 GX is the subset of AX comprising all ground XML

expressions,
 SX is the set of XML specializations, each of which

specifies a (possibly null) sequence of variables to
be specialized and their specializing values/patterns,
 µX is the specialization operator which determines,

for each XML specialization θ in SX, the change of
an XML expression in AX caused by θ.

Unless confusion may arise, the application of a
specialization θ to an XML expression a by the operator µX,
formally denoted by µXθ(a), will be represented as aθ.

Basically, objects and their simple relationships are
explicitly represented as ground XML expressions, while a
more complex and possibly implicit one is modeled by an
XML clause C of the form: H ← B1, …, Bn, where n ≥ 0,
H is an XML expression, and Bi is an XML expression or
an XML constraint. H is called the head and {B1, …, Bn}
the body of the clause. When its body is the empty set, C
will be referred to as an XML unit clause and the symbol
← is often omitted; hence, an XML element or document
is mapped directly onto a ground XML unit clause.

An XML constraint has the form φ(a1, …, an), where
n > 0, φ is a constraint predicate and ai is an XML
expression. The satisfaction (truth or falsity) of a ground
constraint is predetermined. When the context is clear,
some constraints will be represented using infix notation.
For instance, [$S:salary > 10000] and [$S:bonus := $S:salary *
2] represent the constraints GT($S:salary, 10000) and
Mul($S:salary, 2, $S:bonus), respectively.

An XDD description is a set of XML clauses. Intuitively,
given an XDD description P, its meaning denoted by
M(P) is the set of all XML elements which are directly
described by or are derivable from the unit and non-unit
clauses in P. These elements are surrogates of real,
tangible or intangible objects or their relationships in the
domain of interest, modeled by the description P.

Example 1 The XDD description XDB of Fig. 1-a
presents an example of modeling an RDF/XML database of
a simple human resource management application. It
comprises four unit clauses E1 – E4, representing XML
elements in the database, and two non-unit clauses:C1 and
C2, formalizing application axioms for the concepts Senior-
Staff and DepartmentWithSeniorStaff. C1 defines that if X is a
Staff whose salary is more than 10000, then X is regarded as
a SeniorStaff and will receive a double-salary bonus. C2
defines that a department $S:dept is a DepartmentWithSenior-
Staff if there is a SeniorStaff working for that department.
The meaning of XDB is the set of XML elements which
are directly described by the unit clauses, i.e., the elements
E1 – E4, together with those which are deducible from the
database, i.e., the elements E5 and E6 of Fig. 1-b.

3. Referential XDD Descriptions

Here, XDD descriptions will be extended with the ability to
represent referential XML constraints. In essence,
referential constraints generalize the concept of ordinary
XML constraints by inclusion of a facility for referring to
other XDD descriptions, allowing representation of
(higher-order) relations or restrictions. The meaning of a
given referential constraint is determined based on the
meanings of its referred descriptions. Thus, by inclusion of
referential constraints in the clause’s body, an XML clause
can additionally represent/enforce complex relations/
restrictions, the truth or falsity of which is evaluated
according to the meaning of particular XDD descriptions.

The definitions of XML constraints, XML clauses and
XDD descriptions are redefined:

Definition 1 XML constraints, XML clauses and XDD
descriptions are defined inductively by:

1. An XML constraint is an (n+m+1)-tuple
〈φ, a1, …, an, Q1, …, Qm〉, where

– n, m ≥ 0,
– φ is a mapping from G1 × … × Gn × Gn+1 ×
… × Gn+m to {true, false},
where Gi is GX for each 1 ≤ i ≤ n, and 2GX for
each n+1 ≤ i ≤ n+m,

– ai is an XML expression in GX,
– Qi is an XDD description.

2. An XML clause is a formula (H ← B1, …, Bn), where
n ≥ 0, H is an XML expression, and Bi is either an
XML expression or an XML constraint.

3. An XDD description is a set of XML clauses.

An XML constraint 〈φ, a1, …, an, Q1, …, Qm〉 is
called a simple XML constraint iff it comprises solely XML
expressions (i.e., m = 0), and called a referential XML
constraint iff it refers to some XDD descriptions (i.e., m ≥
1). Moreover, it is a ground XML constraint iff it
comprises only ground XML expressions and XDD
descriptions. A clause C is a ground clause iff it comprises
only ground XML expressions and ground XML

E1: <hr:Staff rdf:about="john">
 <hr:name>John Smith</hr:name>
 <hr:education>Doctor</hr:education>
 <hr:department rdf:resource="sales"/>
 <hr:position>Sales Manager</hr:position>
 <hr:salary>12000</hr:salary>
 </hr:Staff>

E2: <hr:Staff rdf:about="jack">
 <hr:name>Jack White</hr:name>
 <hr:education>Master</hr:education>
 <hr:department rdf:resource="computer"/>
 <hr:position>Engineer</hr:position>
 <hr:salary>7000</hr:salary>
 </hr:Staff>

E3: <hr:Department rdf:about="sales">
 <hr:name>Sales Department</hr:name>
 <hr:telephone>750 2255<hr:telephone>
 </hr:Department>

E4: <hr:Department rdf:about="computer">
 <hr:name>Computer Department</hr:name>
 <hr:telephone>750 2277<hr:telephone>
 </hr:Department>

C1: <hr:SeniorStaff rdf:about=$S:X>
 <hr:salary>$S:salary</hr:salary>
 <hr:bonus>$S:bonus</hr:bonus>
 $E:Xproperties
 </hr:SeniorStaff>
 ← <hr:Staff rdf:about=$S:X>
 <hr:salary>$S:salary</hr:salary>
 $E:Xproperties
 </hr:Staff>,
 [$S:salary > 10000],
 [$S:bonus := $S:salary * 2].

C2: <hr:DepartmentWithSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,
 <hr:SeniorStaff rdf:about=$S:staff>
 <hr:department rdf:resource=$S:dept/>
 $E:staffProperties
 </hr:SeniorStaff>.
a. An XDD description XDB = {E1, E2, E3, E4, C1, C2}

E5: <hr:SeniorStaff rdf:about="john">
 <hr:name>John Smith</hr:name>
 <hr:education>Doctor</hr:education>
 <hr:department rdf:resource="sales"/>
 <hr:position>Sales Manager</hr:position>
 <hr:salary>12000</hr:salary>
 <hr:bonus>24000</hr:bonus>
 </hr:SeniorStaff>

E6: <hr:DepartmentWithSeniorStaff rdf:about="sales">
 <hr:name>Sales Department</hr:name>
 <hr:telephone>750 2255<hr:telephone>
 </hr:DepartmentWithSeniorStaff>

b. XML elements derived from XDB
and included in M(XDB)

Figure 1. An XDD description example and its meaning

constraints. The head of C is denoted by head(C) and the
set of all XML expressions and XML constraints in the
body of C by object(C) and con(C), respectively. Let
body(C)=object(C) ∪ con(C). Given θ ∈ SX, application
of θ to a clause (H ← B1, …, Bn) yields the clause (Hθ ←
B1θ, …, Bnθ), and to a constraint 〈φ, a1,…, an, Q1,…, Qm〉
the constraint 〈φ, a1θ, …, anθ, Q1, …, Qm〉.

Employing the formalized concepts, a negative
constraint―one of the most important referential XML
constraints―will be given for representation of negative
information or negation.

Definition 2 A negative constraint has the form

〈fnot, a, Q〉,

where – fnot is a mapping from GX × 2GX to {true, false}
such that

• fnot(g, G) = true if g ∉ G,
• fnot(g, G) = false if g ∈ G,

– a is an XML expression,
– Q an XDD description.

A constraint 〈fnot, a, Q〉 restricts that the expression a
must not be true with respect to the description Q, i.e., a
must not be included in the meaning of Q. In the sequel,
such a constraint will be simply represented as [a ∉
M(Q)]. This formulation of negation is natural because it
permits specification of negative information and its
respective evaluation context.

Example 2 By referring to the description XDB of Fig. 1,
the following clause Cneg derives those departments with no
SeniorStaff.

Cneg: <DepartmentWithoutSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </DepartmentWithoutSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,

 [<hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff> ∉ M(XDB)].

It simply specifies that a department $S:dept is a Department-
WithoutSeniorStaff if it is not a DepartmentWithSeniorStaff. The
first XML expression in Cneg’s body finds a Department-
element from the database and the negative constraint
specifies that such a department is not a DepartmentWith-
SeniorStaff with respect to the description XDB. Cneg’s head
then derives that such a department is a DepartmentWithout-
SeniorStaff.

Definition 3 The declarative semantics of an XDD
description P, denoted by M(P), is defined inductively by:
1. Given the meanings M(Q1), …, M(Qm) of XDD

descriptions Q1, …, Qm, a ground constraint 〈φ, g1, …,
gn, Q1, …, Qm〉 is a true XML constraint iff φ(g1, …,
gn, M(Q1), …, M(Qm)) = true. Define the set Tcon
as the set of all true ground XML constraints, i.e.:

Tcon = {〈φ, g1, …, gn, Q1, …, Qm〉 | gi ∈ GX,
Qi is an XDD description,
φ(g1,…,gn, M(Q1),…,M(Qm))= true }.

2. The meaning M(P) of the description P is the set of
ground XML expressions defined by:

M(P) = U
∞

=1n

[TP]n(∅),

where – TP
1(∅) = TP(∅),

– [TP]n(∅) = TP([TP]n-1(∅)) for each n > 1,
– the mapping TP: 2GX → 2GX is defined by:

For each G ⊂ GX, a ground XML expression g is
contained in TP(G) iff there exist an XML clause C ∈
P and an XML specialization θ ∈ SX such that Cθ is a
ground clause with the head g, all the XML expressions
and constraints in the body of which belong to G and
Tcon, respectively, i.e.:

TP(G) = { head(Cθ) | C ∈ P, θ ∈ SX,
Cθ is a ground clause,
object(C) ⊂ G, con(C) ⊂ Tcon}.

From its definition, one can yield that the meaning of a
description is defined based on the meanings of its referred
descriptions, and thus XDD descriptions with referential
constraints must be stratified. Speaking intuitively, the
meaning of P, i.e., M(P), is a set of all ground XML
expressions which are directly described by and are
derivable from the unit and the non-unit XML clauses in P.

4. Computation Mechanism

4.1. Equivalent Transformation
Computation of XDD descriptions is carried out by
employment of Equivalent Transformation (ET) (Akama,
Shimitsu and Miyamoto 1998)a new, flexible and effi-
cient computational model which solves a given problem,
described in an appropriate language, by simplifying it
through repetitive application of (semantically-)equivalent
transformation rules. Let P1 be an XDD description which
models a particular application or problem. The meaning of
P1, i.e., M(P1), yields the set of XML elements which rep-
resent concepts, instances and interrelationships of these
objects in the application domain, and hence yields the
solutions to the formulated problem. This new computation
paradigm applies ET rules (procedural rewriting rules) in
order to successively transform P1 into P2, P3, etc., while
maintaining the conditions M(P1) = M(P2) = M(P3) = …,
until the desirable description Pn, which is simpler but
equivalent description from which the answers to the given
problem specification can be drawn easily and directly, is
obtained. More precisely, P1 is successively transformed
until it becomes the description Pn, where Pn holds only
XML unit clauses and M(P1) = M(Pn). Hence, the XML
elements directly described by these unit clauses in Pn

readily represent the answers to the problem described by
P1. Moreover, since only ET rules are applied in each
transformation step, the meanings of the descriptions are
maintained and the correctness of the computation is
always guaranteed. The unfolding transformationthe
fundamental computational mechanism in logic program-
mingpresents an example of ET rules. There exist many
other ET rules which reflect or exploit specific application
domain knowledge and data structure, and thus could lead
to more efficient computation.

Recall that an XDD description can refer to other
descriptions by means of referential XML constraints.
These descriptions, thus, form a directed tree structure,
where a description is a parent node of those descriptions it
refers to, and it is a child node of those descriptions
referring to it. Computation of each description is carried
out in its own world in parallel, where a child node
(description) is computed in a child world and a parent
node is computed in a parent world. Information can also
be propagated to/from the parent and child worlds.

4.2 XML Equivalent Transformation
Founded on the XDD theory and the ET paradigm, XML
Equivalent Transformation (XET) engine (Anutariya et al.
2002; Anutariya, Wuwongse and Wattanapailin 2002) has
been developed for direct and succinct manipulation of and
reasoning with XML expressions without a necessity for
data conversion. An XET program comprises a set of XET
rules and a set of XML elements/documents, regarded as
the program’s data or facts. These rules and facts are pre-
pared (semi-automatically) according to the specification
provided by the given XDD description. In general, given
an XDD description modeling a problem in a particular
domain, a set of XET rules and facts for implementing such
a problem can be easily obtained. Thus, XDD descriptions
are viewed as XET program specifications. Additional
XET rules for improvement of computation efficiency can
also be devised based on certain specific characteristics and
properties of application data and rules. The general form
of an XET rule is

 Head, {Condition} → {Execution1}, Body1;
 → {Execution2}, Body2;
 …
 → {Executionn}, Bodyn;
It specifies backward-chaining-like computation and reads:
if the pattern of XML expressions specified by the Head of
a rule matches with the target XML expression and the
Condition is satisfied, then the n bodies fire simulta-
neously, i.e., the built-in or user-defined operations speci-
fied in each Executioni are performed, and the list of XML
expressions specified in the Bodyi replace the target
expression. More precisely, given an XML clause C: H ←
B, B1, …, Bm, such an XET rule is applicable to the target
expression B of the given clause C iff there exists a spe-
cialization θ such that Headθ = B (i.e., the target expression

B must be more specific than the pattern specified by
Head) and Conditionθ is true (by a given evaluator). When
applied, the rule transforms the clause C into (at most) n
clauses: C1, …, Cn. Each clause Ci is obtained from C by
executing Executioniθ and replacing the target expression
B of C by the XML expression(s) specified by Bodyiθ.
Example 3 Fig. 2 presents an XET program XDB.xet for
reasoning with the XML database XDB of Fig. 1. To
demonstrate the XET execution mechanism, consider a
query which simply returns names of all SeniorStaff working
for the sales department, formulated as the clause:

 <answer>$S:name</answer>
 ← <hr:SeniorStaff rdf:about=$S:X>
 <hr:name>$S:name</hr:name>
 <hr:department rdf:resource="sales"/>
 $E:properties
 </hr:SeniorStaff>.

Execution of such a query against the database XDB is
carried out by transforming the query clause using the
implemented rule and facts in XDB.xet. Firstly, the SeniorStaff
rule (Lines 27–52) is applied because the hr:SeniorStaff-
expression in the query clause’s body can match with the
head (Lines 28–32) of that rule. That is, the built-in
operation xet:Unify (Lines 34–43) is executed and the
hr:SeniorStaff-expression in the query clause’s body is
replaced by the expressions specified in the rule’s body,
i.e.: hr:Staff, xet:GT and xet:Mul (Lines 44–50). Hence, the
clause is transformed into:

<answer>$S:name</answer>
 ← <hr:Staff rdf:about=$S:X>
 <hr:name>$S:name</hr:name>
 <hr:department rdf:resource="sales"/>
 <hr:salary>$S:salary</hr:salary>
 $E:StaffProperties
 </hr:Staff>,
 <xet:GT number1=$S:salary number2="10000"/>,
 <xet:Mul number=$S:salary multiplier="2"
 result=$S:bonus/>.

Since the hr:Staff-expression in the clause’s body can be
matched successfully with the first fact (Lines 4–10) in the
program, such an expression is removed and the clause is
then transformed into:

<answer>John Smith</answer>
 ← <xet:GT number1="12000" number2="10000"/>,
 <xet:Mul number="12000" multiplier="2"
 result=$S:bonus/>.

After the execution of the built-in operations xet:GT and
xet:Mul, the answer to the query is obtained:

<answer>John Smith</answer> ← .

That is, John Smith is the only SeniorStaff working for the
sales department.

 4.3. Rules for Negative Constraints
This section defines three basic ET rules for computation
of XDD descriptions with negative constraints.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

<xet:Program xmlns:xet="http://kr.cs.ait.ac.th/XET"
 xmlns:hr="http://kr.cs.ait.ac.th/hr-schema.daml">
 <xet:Fact>
 <hr:Staff rdf:about="john">
 <hr:name>John Smith</hr:name>
 <hr:education>Doctor</hr:education>
 <hr:department rdf:resource="sales"/>
 <hr:position>Sales Manager</hr:position>
 <hr:salary>12000</hr:salary>
 </hr:Staff>
 <hr:Staff rdf:about="jack">
 <hr:name>Jack White</hr:name>
 <hr:education>Master</hr:education>
 <hr:department rdf:resource="computer"/>
 <hr:position>Engineer</hr:position>
 <hr:salary>7000</hr:salary>
 </hr:Staff>
 <hr:Department rdf:about="sales">
 <hr:name>Sales Department</hr:name>
 <hr:telephone>750 2255<hr:telephone>
 </hr:Department>
 <hr:Department rdf:about="computer">
 <hr:name>Computer Department</hr:name>
 <hr:telephone>750 2277<hr:telephone>
 </hr:Department>
 </xet:Fact>
 <xet:Rule name="SeniorStaff">
 <xet:Head>
 <hr:SeniorStaff rdf:about="Svar_X">
 Evar_SeniorStaffProperties
 </hr:SeniorStaff>
 </xet:Head>
 <xet:Body>
 <xet:Unify>
 <xet:Expression>
 Evar_SeniorStaffProperties
 </xet:Expression>
 <xet:Expression>
 <hr:salary>Svar_salary</hr:salary>
 <hr:bonus>Svar_bonus</hr:bonus>
 Evar_StaffProperties
 </xet:Expression>
 </xet:Unify>
 <hr:Staff rdf:about="Svar_X">
 <hr:salary>Svar_salary</hr:salary>
 Evar_StaffProperties
 </hr:Staff>
 <xet:GT number1="Svar_salary" number2="10000"/>
 <xet:Mul number="Svar_salary" multiplier="2"
 result="Svar_bonus"/>
 </xet:Body>
 </xet:Rule>
 <xet:Rule name="DepartmentWithSeniorStaff">
 <xet:Head>
 <hr:DepartmentWithSeniorStaff rdf:about="Svar_dept">
 Evar_deptProperties
 </hr:DepartmentWithoutSeniorStaff>
 </xet:Head>
 <xet:Body>
 <hr:Department rdf:about="Svar_dept">
 Evar_deptProperties
 </hr:Department>
 <hr:SeniorStaff rdf:about="Svar_staff">
 <hr:department rdf:resource="Svar_dept"/>
 Evar_staffProperties
 </hr:SeniorStaff>.
 </xet:Body>
 </xet:Rule>
</xet:Program>

 Figure 2. XET program XDB.xet

 Throughout this section, let P, Q, Q′ and Q″ be XDD
descriptions, C and C

′ be XML clauses, and a and b be
XML expressions. Firstly, a transformation, which defines
the starting point for processing negative constraints, is
presented. It merges the expression a of a given negative
constraint [a ∉ M(Q)] and its referred description Q into a
new description Q′ = Q ∪ { <xet:NotRule>a</xet:NotRule>
← a }, and then transforms the given constraint into
[<xet:NotRule>a</xet:NotRule> ∉ M(Q′)]. Thus, closely
interrelated computation with the expression a and the
referred description Q becomes possible by equivalent
transformation of the description Q′.

ET Rule 1 (Merging of Object) Let

– Q′ = Q ∪ {<xet:NotRule>a</xet:NotRule> ← a},
– C: (H ← B1, …, Bi, [a ∉ M(Q)], Bi+1, …, Bn),
– C

′: (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule>
∉ M(Q′)], Bi+1, …, Bn).

Then, M(P ∪ {C}) = M(P ∪ {C
′}), and P ∪ {C} can be

transformed equivalently into P ∪ {C
′}.

Next, let Q′ allow equivalent transformation into Q′′ ∪
{<xet:NotRule>b</xet:NotRule> ← }. Hence, the negative
constraint [<xet:NotRule>a</xet:NotRule> ∉ M(Q′)] can be
replaced by [a ∉ rep(b)] and [<xet:NotRule>a</xet:NotRule>
∉ M(Q′′)], where [a ∉ rep(b)] represents a constraint
which will be true iff a is an XML element and a is not a
ground instance of b, i.e., there must not exist θ ∈ SX such
that a = bθ. This process is materialized by the following
transformation:

ET Rule 2 (Lifting Transformation) Let

– Q′ = Q′′ ∪ {<xet:NotRule>b</xet:NotRule> ← },
– C: (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule>

∉ M(Q′)], Bi+1, …, Bn),
– C

′: (H ← B1, …, Bi, [a ∉ rep(b)],
[<xet:NotRule>a</xet:NotRule>∉ M(Q′′)],
Bi+1, …, Bn),

where [a ∉ rep(b)] is a true constraint iff a is an
XML element which is not a ground instance of b, i.e.,
there is no θ ∈ SX such that a = bθ.

Then, M(P ∪ {C}) = M(P ∪ {C
′}), and P ∪ {C} can be

transformed equivalently into P ∪ {C
′}.

If the referred description Q′ of a constraint
[<xet:NotRule>a</xet:NotRule> ∉ M(Q′)] cannot be trans-
formed equivalently into a description Q′′ ∪
{<xet:NotRule>b</xet:NotRule> ← }, such a constraint can
be eliminated from a clause. This is implemented by:

ET Rule 3 (Elimination of Negative Constraint) Let

– Q′ be a description which cannot be transformed
equivalently into a description
Q′′ ∪ {<xet:NotRule>b</xet:NotRule> ← },

– C: (H ← B1, …, Bi, [<xet:NotRule>a</xet:NotRule>
∉ M(Q′)], Bi+1, …, Bn),

– C
′: (H ← B1, …, Bi, Bi+1, …, Bn).

Then, M(P ∪ {C}) = M(P ∪ {C
′}), and P ∪ {C} can be

transformed equivalently into P ∪ {C
′}.

Example 4 Based on the presented three rules for
negative constraints and the implemented rules and facts of
XDB.xet (Fig. 2), the computation of the query Cneg
(Example 2), which finds departments with no SeniorStaff, is
shortly demonstrated.

Step 1: The original problem is formalized as:

P = {Cneg: <DepartmentWithoutSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </DepartmentWithoutSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,
 [<hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff> ∉M(XDB)]}

Step 2: Transform the negative constraint in Cneg by ET
Rule 1:

P = {Cneg: <DepartmentWithoutSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </DepartmentWithoutSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,
 [<xet:NotRule>
 <hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff>
 </xet:NotRule> ∉ M(XDB′)] }

XDB′ = XDB ∪ {<xet:NotRule>
 <hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff>
 </xet:NotRule>
 ← <hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff> }

Step 3: By applying the rules DepartmentWithSeniorStaff
(Lines 27-51) and SeniorStaff (Lines 52-67) as well as
unfolding with the facts (Lines 3-26) in XDB.xet, XDB′ can
be equivalently transformed into:

XDB′ = XDB ∪ {<xet:NotRule>
 <hr:DepartmentWithSeniorStaff
 rdf:about="sales">
 <hr:name>Sales Department</hr:name>
 <hr:telephone>750 2255<hr:telephone>
 </hr:DepartmentWithSeniorStaff>
 </xet:NotRule> ← }

Step 4: Because XDB′ comprises a unit clause with the
xet:NotRule-expression in its head, ET Rule 2 is applied:

P = {Cneg:<DepartmentWithoutSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </DepartmentWithoutSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,
 [<hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department> ∉
 rep(<hr:DepartmentWithSeniorStaff
 rdf:about="sales">
 <hr:name>Sales Department</>
 <hr:telephone>750 2255</>
 </hr:DepartmentWithSeniorStaff>)]
 [<xet:NotRule>
 <hr:DepartmentWithSeniorStaff
 rdf:about=$S:dept>
 $E:deptProperties
 </hr:DepartmentWithSeniorStaff>
 </xet:NotRule> ∉ M(XDB)] }

Step 5: Because XDB′ cannot be further transformed into
a description comprising a unit clause with xet:NotRule-
expression in the head, ET Rule 3 is applied:

P = {Cneg: <DepartmentWithoutSeniorStaff rdf:about=$S:dept>
 $E:deptProperties
 </DepartmentWithoutSeniorStaff>
 ← <hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department>,
 [<hr:Department rdf:about=$S:dept>
 $E:deptProperties
 </hr:Department> ∉
 rep(<hr:DepartmentWithSeniorStaff
 rdf:about="sales">
 <hr:name>Sales Department</>
 <hr:telephone>750 2255</>
 </hr:DepartmentWithSeniorStaff>)]}

Step 6: By unfolding the hr:Department-expression in
Cneg’s body with the third and fourth facts of XDB.xet and by
evaluating the constraint [a ∉ rep(b)] in the clause’s body,
the description P can be equivalently transformed into:

P = {Cneg:<DepartmentWithoutSeniorStaff rdf:about="computer">
 <hr:name>Computer Department</hr:name>
 <hr:telephone>750 2277<hr:telephone>
 </DepartmentWithoutSeniorStaff> ← }

Since only semantic-preserving transformations are
used in every step, the meaning of the transformed
description P is preserved and the obtained answer:
 <DepartmentWithoutSeniorStaff rdf:about="computer">
 <hr:name>Computer Department</hr:name>
 <hr:telephone>750 2277<hr:telephone>
 </DepartmentWithoutSeniorStaff>

is guaranteed to be correct.

5. Extended XDD Descriptions with FLCs

This section outlines an extension of XDD descriptions
with the mechanism to express arbitrary first-order
formulae. Such an expression is represented as a first-order

logical constraint (FLC)a special kind of constraints
which is composed of XML expressions and logical
symbols: ¬, ∧, ∨, ⇒, ∀ and ∃. An FLC is defined as:

1. An XML expression is an FLC.
2. An XML constraint is an FLC.
3. If F and G are FLCs, then so are ¬F, F ∧ G, F ∨ G

and F ⇒ G.
4. If F is an FLC and x is a variable, then (∀x F) and

(∃x F) are FLCs.
An XDD description with FLCs is then formalized as a set
of extended XML clauses with FLCs. Each clause has the
form H ← F, where the head H is an XML expression and
the body F an FLC. Employing those transformation
techniques developed in the first-order logic theory (Lloyd
1987), extended XDD descriptions with FLCs can be
straightforwardly transformed into equivalent XDD
descriptions (with negative constraints) in a finite number
of steps, and the meaning of a given description with FLCs
is directly defined by means of its equivalent description.

6. Conclusions

The developed XDD theory with negative constraints
yields a unified XML-based knowledge representation with
sufficient expressive power to represent all XML applica-
tions, enhances their expressiveness and lets their intended
meanings be determined directly. It provides more direct
insight into XML data representation and manipulation,
and facilitates means for uniform expression of explicit and
implicit information, ontologies, constraints, negation and
axioms by direct employment of XML elements as its basic
language component. It is employed to model various
applications such as constrained XML databases (Akama et
al. 2002; Wuwongse et al. 2003), the Semantic Web
(Anutariya et al. 2002; Suwanapong, Anutariya and
Wuwongse 2002; Wuwongse et al. 2001) and UML
diagrams (Nantajeewarawat et al.). Employment of the ET
framework leads to computation with XDD by successive,
equivalent transformation of a given description—a
problem’s specification—into the desired one—a prob-
lem’s solution. Hence, the efficiency of the computation
relies solely on the employed ET rules.

XET engine (Anutariya et al. 2002; Anutariya,
Wuwongse and Wattanapailin 2002), which integrates
XML syntax, XDD representation style and ET mecha-
nism, is also available for direct and succinct manipulation
of and reasoning with XDD descriptions. Its employment to
implement various XML-, RDF- and DAML-based proto-
type systemssuch as an XML database system (Akama et
al. 2002; Wuwongse et al. 2003), an intelligent, ontology-
enabled Semantic Web service system (Suwanapong,
Anutariya and Wuwongse 2002) and e-business applica-
tions (Anutariya et al. 2002; Anutariya, Wuwongse and
Wattanapailin 2002)helps demonstrate the viability and
potential in real applications. Further work includes devel-
opment of more efficient ET rules specific for XML data
structure as well as incorporation of basic built-in ET rules
into the XET engine for dealing with FLC constraints.

References
Abiteboul, S, Buneman, P., Suciu, D. 2000. Data on the Web:

From Relations to Semistructured Data and XML: Morgan
Kaufmann Publishers.

Akama, K. 1993. Declarative Semantics of Logic Programs on
Parameterized Representation Systems. Advances in Software
Science and Technology 5:45-63.

Akama, K., Shimitsu, T., Miyamoto, E. 1998. Solving Problems
by Equivalent Transformation of Declarative Programs. Journal
of the Japanese Society of Artificial Intelligence 13(6):944-952.

Akama, K., Anutariya, C., Wuwongse, V. and Nantajeewarawat,
E. 2002. Query Formulation and Evaluation for XML
Databases. In Proc. First IFIP Workshop on Internet
Technologies, Applications, and Societal Impact, 273-288.
Wroclaw, Poland: Kluwer Academic Publisher.

Anutariya, C., Wuwongse, V., Akama, K. and Wattanapailin, V.
2002. Semantic Web Modeling and Programming with XDD.
The Emerging Semantic Web, Series: Frontiers in Artificial
Intelligence and Applications 75: IOS Press.

Anutariya, C., Wuwongse, V. and Wattanapailin, V. 2002. An
Equivalent-Transformation-Based XML Rule Language. In
Proc. International Workshop on Rule Markup Languages for
Business Rules in the Semantic Web, Italy.

Brickley, D. and Guha, R. V. 2000. Resource Description
Framework (RDF) Schema Specification 1.0, W3C Candidate
Recommendation March 2000.

Grosof, B.N., Labrou, Y. and Chan, H.Y. 1999. A Declarative
Approach to Business Rules in Contracts: Courteous Logic
Programs in XML. In Proc. First ACM Conference on Elec-
tronic Commerce (EC99), 68–77.

Hendler, J. and McGuinness, D.L. 2000. The DARPA Agent
Markup Language. IEEE Intelligent Systems 15(6):72-73.

Lassila, O. and Swick, R.R.: Resource Description Framework
(RDF) Model and Syntax Specification, W3C Recommendation
February 1999. [http://www.w3.org/TR/REC-rdf-syntax]

Lee, J.K. and Sohn, M.M.. 2002. Extensible Rule Markup
Language – Toward the Intelligent Web Platform.
Communications of the ACM. Forthcoming.

Lloyd, J. W. 1987. Foundations of Logic Programming, 2nd
Edition: Springer Verlag.

Murata, M. 1995. Hedge Automata: A Formal Model for XML
Schemata, Technical Report, Fiji Xerox Information Systems.

Murata, M. 1997. Transformation of Documents and Schemas by
Patterns and Contextual Conditions. In Proc. Principle of
Document Processing, LNCS 1239, 153-159: Springer Verlag.

Nantajeewarawat, E., Wuwongse, V., Anutariya, C., Akama, K.
and Thiemjarus, A. Towards Reasoning with UML Diagrams
Based-on XML Declarative Description Theory. Journal of
Intelligent Systems. Forthcoming.

Suwanapong, S., Anutariya , C. and Wuwongse, V. 2002. An
Intelligent Web Service System. In Proc. of IFIP WG8.1
Working Conf. Information Systems in the Internet Context
(EISIC’02), Kanazawa, Japan: Kluwer Academic Publisher.

Wuwongse, W., Akama, K., Anutariya, C. and Nantajeewarawat,
E. 2003. A Data Model for XML Databases. Journal of
Intelligent Information Systems 20(1):63-80.

Wuwongse, W., Anutariya, C., Akama, K. and Nantajeewarawat,
E.: XML Declarative Description (XDD): A Language for the
Semantic Web. IEEE Intelligent Systems 16(3):54-65.

