
Designing Interactive Multi-agent Systems with Semantic 3D
Environments

Zhiqiang Gao

Department of Computer Science and Engineering, Southeast University, China
gao_zhiqiang@yahoo.com

Abstract
3D virtual spaces hosting multi-agents are constructed by
shapes, terrains, paths, textures, colors, lights and fogs in
the scene. These 3D models and features can be displayed
by browsers just as HTML by IE, and perceived by human
users easily. However, it is difficult for agents to interact
with 3D objects without semantic annotations such as
contents, design purposes and effectives. This is especially
true for interactive multi-agent system design, because
environments and scenarios of agents are often specified by
different humans. So, we address the following issues in this
paper: 1) How to design interactive multi-agent systems? 2)
What kind of semantic information is required for 3D
environments annotation? 3) How to annotate 3D
environments?

1. Introduction

Interoperability among agents and agent systems has been
intensively studied by FIPA (www.fipa.org) and
Agentcities (www.agentcities.org), which facilitate the
inter-working of agents and agent systems across multiple
vendors’ platforms (Dale, Willmot and Burg, 2002). Ishida
(2002a, 2002b) has emphasized the interaction design
between humans and agents by introducing scenarios to
describe a human request to a large number of agents with
different roles. The scenarios also establish a bridge
between agent designers and application designers
(Zhiqiang, 2002a and 2002b). The Semantic Web brings
structure to the meaningful contents of Web pages, creating
an environment where software agents roaming from page
to page (Berners Lee, Hendler and Lassila, 2001. DAML+OIL
Revised Specification, 2001). However, little attention has
been paid to semantic annotation of non-text information,
such as video, audio, image and graphics. The goal of
MPEG-7 standard is to develop a rich set of standardized
tools to enable both humans and machines to generate and
understand audiovisual descriptions (Martinez, 2001). The
idea of “inverse causality” was introduced whereby objects
in the environment told an animated agent how it should
interact with them (Goldberg, 1997). Doyle (2002) introduced
the concept of annotated environment in text-based MUD
world, an environment which contains structured
representations of its content and its purpose, authored by
the creator of the environment.

The idea of this paper comes mainly from “inverse causality” of
Goldberg (1997). However, our concern is 3D environments,
which are much more difficult to tackle with when compared to
texts. The following of this paper is organized as: We first design
an interactive anti-terrorist shooter training simulation system,
discuss the requirements for 3D space annotation, and then
illustrate example ontology visually. At last, part of the
implementation for the multi-agent system is presented.

2. Designing Interactive Multi-agent Systems

Figure 1. Interactive multi-agent system for anti-terrorist
shooter training simulation

Environment creators and scenario designers of interactive
multi-agent systems are often different people. Given an
example of Digital City Kyoto (Ishida, 2002a), it is
computer professionals and architects to build the 3D
model of Kyoto Station, and social scientists do evacuation
simulation by specifying scenarios for agents. In the case of
shooter training simulation, researchers construct 3D
spaces and implement cues and actions (which are
primitives of Q language, see Ishida 2002a) of terrorists
and pedestrians (agents), including fire, jump, move, hear,
etc. The purpose and effectives of objects in the scene are
annotated in order for agents to interact with smartly. The

3D Models,
Scenarios for

Dynamic Objects

Computer ProfessionalsMilitary Instructors

Scenarios
for Agents

Cues/
Actions

Semantic 3D
Environments

Shooters
Multi-agent System

scenarios of agents are designed by instructors, and may by
modified again and again. Shooters walk and fire in real
world with their positions and intentions recognized via
computer vision technique. See Figure 1.

Describing Scenarios for Agents
An indoor anti-terrorist shooter training simulation process
is described below. An elevator runs up and down with
neon light indicating floor. After it reaches the first floor,
its door slides open and a target (passenger) will drop off.
A shooter in real world then asks him to show his
identification card. The target either shows it, or pulls out a
pistol to fire at the shooter. The scenario of the target is
specified by military instructors, as shown in Figure 2.
Note that corruption of target scenario execution due to
shooter firing is treated by its reactive layer.

(defagent terrorist
 :scenario ‘Fire
 :weapon: ‘PISTOL
 :sensitivity ‘HIGH

 :position ‘Elevator
 :orientation ‘Door
 :gentle ‘MALE
 :cloth BLACK
 : trouser GREY)

 (defscenario fire
 (scene1 ((?see :what ‘(door opened))
 (!walk :direction ‘door) (go scene2))
 (otherwise

(go scene1)))
 (scene2 ((?hear :what “Show your identification card!”)
 (!fire :at ‘shooter)

(!finish)))
 (otherwise

(!walk :direction ‘door)
(!finish))))

Figure 2. Definition and scenarios for agents

Requirements for Annotating 3D Environments
Objects in 3D virtual spaces are classified as dynamic
objects and static objects. The appearances and shapes of
dynamic objects change without the interaction of agents
and avatars. For example, the neon light of the elevator
changes its number in time sequence. The door of the
elevator has two states as opened or closed, and become
opened after the elevator gets its level. Dynamic objects are
controlled by scenarios like agents. Static objects have only
one state, including ground of the elevator, identification
card and pistols. They may change their positions passively
by following the action of agent or due to gravity, and
semantic annotations are mainly designed for them.

Annotations are characterized along three high-level
dimensions similar to Doyle (2002).
{descriptive, directive}
Descriptive annotations provide factual information with
no indication about how that information should be
employed, and directive annotations provide the agent with
an explicit recommendation with regard to its behavior.
The geometry of the door of elevator is descriptive, with its
purpose for agent to get out being directive.
{object, relationship, operation}
An object is primitive element in the virtual space such as
identification card and pistol. Relationships can exist
between objects. For example, the elevator unit consists of
door and side walls. Operations are actions that can be
performed by the agent, which are mainly annotated for
collision check.
{content, context}
Content describes elements and happenings in the
environment, without providing any underlying justification
for why these annotations are present or how they should
be employed, such as current action of the shooter. Context
annotations indicate that certain knowledge is only relevant
in some circumstances. A pistol can be fired only after it is
raised by the shooter.

Annotating 3D Environments
As mentioned above, we take indoor anti-terrorist shooter
training simulation as an example, which happens near an
elevator. Its ontology is annotated by DAML+OIL and
shown visually in Figure 3. There are six static objects in
3D spaces, which are the ground, the four side walls, an
identification card and a pistol. There are two dynamic
objects in the situation, which are the door and the neon
light of the elevator. Geometry properties are designed for
collision check, and purpose properties are annotated for
the agent to act, such as the purpose of the door is for agent
to drop off the elevator, with the ground for it to stand on.

3. Implementing Interactive Multi-agent
Systems

Cues and Actions for Agents
Human-like agents of terrorists and pedestrians move
realistically, respond to scenarios specified, and travel
about the environment as directed. In order to simplify the
task of adding life-like human characters to real-time
interactive simulations and allow instructors to concentrate
on telling agents where to go and what to do, we use Q
scenarios to constrain the behavior of agents. Cues and
actions for agents are summarized as:
Cues
?hear ?see
Actions
!stand-ready !kneel-ready !prone-ready
!stand-aim !kneel-aim !prone-aim

Figure 3. Part of the elevator ontology for anti-terrorist shooter training simulation

subClassOf

DataTypeProperty
Operation

onProperty

subClassOf Restriction

Class
Object

Class
Dynamic Object

Class
Static Object

Scenario

DataTypeProperty
UniquePrpperty

Class
Neon Light Class

Ground

DataTypeProperty

Geometry

Class
Side Walls

Class
Pistol

Class
Door

DataTypeProperty
Purpose

Class
Identification Card

Collection

subClassOf

onProperty
Cardinality

 1

Restriction

Cardinality 1

subClassOf
subClassOf

Restriction
subClassOf

Restriction
subClassOf

onProperty

Class
Back Wall

Class
Right Wall

Class
Left Wall

subClassOf

subClassOf

subClassOf

Class
Elevator

subClassOf subClassOf

unionOf

Collection

unionOf

!walk !crawl !jog
!dead !fire !run
!stand !speak !finish

Constructing 3D Models
The visual database of 3D models is saved in MultiGen-
Paradigm’s OpenFlight (.flt) file format, which has become
the standard file format for most realtime systems. The
database hierarchy that the OpenFlight format uses has two
main purposes: it organizes geometry into nodes that can
easily be edited and moved, and it provides a tree structure
that the runtime system can process. A node is the
fundamental element or building block for constructing the
database hierarchy. Beginning with the database (DB) node,
a general database structure follows this order:

DB Node: Contains descriptive information about the
entire database itself. Only one DB node can be at the
top of the structure.

Master Groups: A master group node represents the
entire model. All component hierarchies are ultimately
attaches to this common point.

Significant Groups: A number of group nodes, each
representing major components of visual database.

Objects: Objects can only contain face nodes
(polygons), and are used to mark single objects with
no moving parts.

Faces: Face nodes are easily recognized because they
are always drawn in the color of their respective face
as viewed. Faces can be attached to groups, objects, or
other faces.

Vertex: Vertex attributes are characteristics of face
attributes and have no hierarchal significance.

After 3D models have been constructed, semantic
annotations might be added to nodes as comments in
OpenFlight format, such as classes, design purposes,
contents, and so on. When agents behave in the virtual
spaces under the constraint of scenarios, they can interact
with 3D models smartly. However, we are still on the way
to build such an intelligent interactive multi-agent system.

4. Conclusions
We discussed the approaches in designing interactive
multi-agent systems, including interaction between human
users and agents which is described by Q scenarios, the
interoperation among agents which is standardized by FIPA
and Agentcities, as well as Web contents annotation studied
by Semantic Web. To enable agents to act effectively and
plausibly in 3D virtual spaces we introduce semantic
annotation to objects in addition to geometries, such as
design purposes, operations and contexts. An indoor anti-
terrorist shooter training simulation system is designed, and
example ontology annotated by DAML+OIL is shown.

References
1. Berners Lee T., Hendler J. and Lassila O.: The Semantic

Web: A new form of Web content that is meaningful to
computers will unleash a revolution of new possibilities. The
Scientific American. 2001

2. Dale, J., Willmot, S., Burg, B.: Agentcities: Challenges and
Deployment of Next-Generation Service Environments.
Pacific Rim International Workshop on Multi-Agents
(PRIMA 2002), Tokyo, Japan, 2002

3. DAML+OIL Revised Language Specification, march 2001.
<http://www.daml.org/2001/03/daml+oil-index/>

4. Doyle P.: Believability through Context: Using “knowledge
in the world” to create intelligent characters. AAMAS02,
pp342-349. Bologna, Italy, 2002.

5. Goldberg A.: IMPROV: A system for real-time animation of
behavior-based interactive synthetic actors. Lecture Notes in
Computer Science, 1195, 1997.

6. Martinez J.: "Overview of the MPEG-7 Standard (version
5.0)". ISO/IEC JTC1/SC29/WG11 N4031, Singapore, March
2001

7. Ishida, T.: Q: A scenario Description Language for
Interactive Agents. IEEE Computer, Vol. 35, No 11, pp54-
59, 2002

8. Ishida, T.: Digital City Kyoto: Social Information
Infrastructure for Everyday Life. Communications of the
ACM (CACM), Vol. 45, No. 7, pp76-81, 2002

9. Zhiqiang, G., Tomoyuki, K., Akishige, Y., and Ishida, T.:
Meta-Level Architecture for Executing Multi-agent
Scenarios. Lecture Notes in Artificial Intelligence, 2413,
Springer-Verlag, pp163-177, 2002

10. Zhiqiang, G., Arai S. and Ishida T.: Interoperability and
Interaction Design, to appear in Lecture Notes in Artificial
Intelligence, 2002

