
A Framework for Communication Support Agents
– Implementation of an RDF-based Personal Repository –

Koji Kamei Sen Yoshida Kazuhiro Kuwabara
NTT Communication Science Laboratories, NTT Corporation

e-mail: {kamei, yoshida, kuwabara}@cslab.kecl.ntt.co.jp

Abstract

We propose a framework for developing per-
sonal agents that support individuals’ communi-
cation activities. The framework offers an RDF
repository-centered architecture in which a group
of applications work collaboratively, supported by
the event notification mechanism in the reposi-
tory. Our RDF-based approach targets the collec-
tion of information on interactions between users
and information resources, representing those in-
teractions as annotations to original information
resources, and employing these annotations to
support a user’s activity. In this paper, we discuss
annotations in personal environments and require-
ments for personal repositories, then describe the
framework’s current implementation.

Introduction

In collaborative activity between individuals, sharing
and exchanging information among individuals play im-
portant roles in communication. We receive a great
deal of information from other individuals, interpret it
and reflect on it using our knowledge. We then pro-
duce new information and forward it to other individ-
uals. We propose a framework for personal agents that
aims to support this type of information sharing and
exchange among individuals. We primarily target the
phases of receiving information and its subsequent use;
in other words, our framework aims to support the re-
flexive phase in an individual’s activity. To realize this
objective, the personal agent utilizes the user’s personal
annotations that each individual privately adds to in-
formation resources stored at hand.

Here, the annotations include primarily verbal an-
notations that users’ explicitly added to information,
and additionally descriptions about interaction between
users and information. More specifically, the latter de-
scribes how one has handled a resource, such as, “the
timestamp when the user read a document,” “the folder
to which the user moved an e-mail,” and “other users
to whom the user introduced a Web page.” In other
words, the annotations that we are concerned with here
describe the interaction between a user and items of in-
formation, and that between the user and other users.

By adding such annotations of interaction, the agent
system can organize and reuse information items for its
user. Thus, by utilizing the organized knowledge, the
agent can support its user’s communication activities.

When annotations are added interactively and the or-
ganization becomes complicated, it is appropriate to use
a schema-less, semi-structured database (Abiteboul et
al. 1997; Buneman, Fernandez, & Suciu 2000). We have
employed the resource description framework (RDF)
(Lassila & Swich 1999) to describe this kind of an-
notations of interaction. In this case, individuals and
documents are mapped as resources in an RDF state-
ment, and interactions are mapped as predicates. The
Haystack project (Huynh, Karger, & Quan 2002), for
example, shares this type of approach.

It is natural and easy to use RDF statements to de-
scribe annotations of interactions. However, ontologies
on interaction and information handling have not been
adequately discussed to date, due to the difficulty in
defining the vocabulary of interaction dissociated from
cases of actual use, as opposed to the clearly defined
class hierarchies of vocabulary for knowledge represen-
tation. It is also addressed in (Stojanovic & Motik
2002) that ontologies must be able to evolve continu-
ously. The current implementation status of our frame-
work described in this paper supplies a means for de-
veloping RDF-based annotations of interaction, and
contributes to refining the definition of vocabularies
through actual implementation of application systems.

In this paper, we describe an agent framework with
an RDF-based personal repository. First, we discuss
annotations in the personal environment and require-
ments for the personal repository, then describe current
implementation of the framework. Finally, we discuss
the future directions of our research, that is, in which
application domain we should define the vocabulary of
interaction. We describe experimental implementation
of two existing communication environments, Commu-
nityOrganizer (Kamei et al. 2002), and Gleams of Peo-
ple (Ohguro 2001) as a starting point for this approach.

Personal Repository
In this section, we first discuss the role of annotation in
personal environments, and then describe the require-

ments for a personal repository that enables and utilizes
the personal annotations.

Annotations in Personal Environments
In the context of the Semantic Web, annotations change
Web pages from human-readable ones to machine-
readable ones. The case introduced with the Seman-
tic Web explains that the annotations to a Web page
are added by the page’s publisher and published world-
wide. This model can be classified as a publisher-
driven, open-style method of annotation.

On the other hand, information resources acquired by
individuals are not limited to public items such as Web
pages, but also include non-public items such as private
e-mails. Moreover, private information is often more
important than public information; therefore it would
be natural to suppose that users would also add anno-
tations to items of private information. Furthermore,
it is important to pay attention to the receiver-side an-
notations in addition to publisher-side annotations.

Although both the RDF model and other existing im-
plementations of the annotation server cover this type
of receiver-side annotation, the use of personal annota-
tions have not yet been mentioned. For example, the
scenario described by the Annotea project (Koivunen
& Swick 2001) proposes a case for their use, in which
an annotation server is deployed globally to collect and
share the annotation statements, and clients then share
the server. It also allows multiple servers to exist for
different purposes and for different groups of users,
but does not address the concept of private annotation
servers and collaboration.

Nejdl et al. discussed collaborative annotation (Nejdl
et al. 2002) as a part of EDUTELLA, which is a frame-
work to allow communication between different RDF
repositories. They proposed a modification exchange
language designed to keep decentralized repositories co-
herent. Although the language is useful for exchanging
personal annotations, their interests seem heading for
rather coherency than individuality.

Requirement for Personal Repository
data model and back-end storage The personal
repository needs to support the features of an RDF
database, since relationships between individuals and
items of information can be described as RDF state-
ments. Additionally, an auxiliary information storage
item is required to save these items and issue a URI to
each one. Object-oriented database systems or XML
database systems with Object-XML mapping features
are suitable for this requirement.

event notification framework Since multiple ap-
plications run simultaneously on a personal agent
framework and share RDF statements and information
items in the repository, they need to be notified when
the data that they are referring to changes. An event
notification framework enables application modules to
collaborate with each other.

inter-repository communication The communi-
cation layer between personal agents is based on the
concept of peer-to-peer communication; that is, each
agent can send messages directly to any known agents.
In actual cases of group communication, messages may
also be exchanged in a server-oriented manner.

Implementation of Personal Repository
The personal repository is currently implemented in
a Java2 SDK 1.3.1 environment, and employs various
open source products relating to XML technologies.
The whole system architecture is shown in Figure 1.

Back-end Storage
Data in personal repositories are stored in both XML
and RDF storage. The former assigns a URI to each
XML document so that the items can be addressed us-
ing URIs from RDF statements. The latter holds RDF
statements that describe relationships between infor-
mation items: items in XML storage and those defined
outside of the repository. Both XML and RDF storage
possess specialized retrieval functions.

The RDF storage is implemented on a Jena Seman-
tic Web toolkit 1. For the back-end storage of Jena,
MySQL 2 is used for persistency. The XML storage
utilizes eXist3, which implements XML:DB API 4 and
shares the back-end MySQL system with the RDF stor-
age.

The query interface to the repository is currently de-
fined at the Java API level, though it is obviously neces-
sary to define a query language independent from low-
level APIs. We are currently on the way to designing
a repository query language that supports not only the
query/update function, but also our event notification
framework (described below). We alos plan to imple-
ment a script engine for the language as a service on
the event notification layer.

Event Notification Framework
The event notification framework is built upon both
types of storage described in the previous section. This
framework monitors write operations to the storage,
and notifies application modules of modifications such
as registration of an RDF statement related to particu-
lar nodes and/or predicates, or registration of an XML
document with a specific element and/or value. This
feature is based on the concept of the active database.

Personal agent applications consist of multiple mod-
ules that are activated by the event notification frame-
work on the repository. Each module registers a tem-
plate pattern for each condition from which it desires
to be notified of the change.

The repository contains a group of core modules that
are started when the repository is invoked. In addition,

1http://www.hpl.hp.com/semweb/jena-top.html
2http://www.mysql.com/
3http://eist-db.org/
4http://www.xmldb.org/xapi/index.html

Privacy
Module

Application
Modules

Comm.
Modules

Repository Interface

Event Notification Framework

XML Storage RDF Storage

(Jena)

Persistent Storage (MySQL)

Messaging

Session

SOAP

Core Modules

(eXist)

Figure 1: The architecture of the personal repository.

the repository can contain various modules that are reg-
istered by applications invoked by the user. Since mul-
tiple applications can listen to a repository simultane-
ously, a store operation (of an RDF statement or XML
document) performed by a certain application module
may trigger another application. As a result, coordina-
tion among applications can be realized.

The event notification between user interface modules
and the repository, and information exchange between
other personal agents are also implemented using this
event notification framework.

Overall behavior of the agent and applications is re-
alized by the interaction of those modules through data
(and changes in data) in the repository.

Communication between Personal Agents

The protocol for communication between personal
repositories supports two features. One is connection
management, which determines where the peer exists,
and the other is a simple messaging feature that deliv-
ers an XML document to the peer. These protocols are
implemented as messaging services on SOAP 5, which
is a lightweight protocol intended for exchanging struc-
tured information in a decentralized, distributed envi-
ronment. We defined the protocol using SOAP to keep
the protocol itself independent of Java language in or-
der to secure interoperability. While SOAP provides a
range of features, such as remote procedure calls, mes-
sage forwarding, etc., we employ its message exchange
feature on the HTTP protocol to exchange XML ele-
ments. Currently, the services are implemented with
Apache Axis 6 SOAP library and deployed to Tomcat 7

servlet containers. Since inter-repository communica-

5http://www.w3.org/TR/soap12-part0/
6http://xml.apache.org/axis/
7http://jakarta.apache.org/tomcat/

tion is performed in a peer-to-peer manner, each repos-
itory needs to invoke its own servlet container to receive
requests from other repositories.

At this communication level, each agent can register
templates, which describe the notification condition, to
the other agents’ repositories to request that it be no-
tified of the changes in the target repository. A privacy
management module is deployed to monitor the regis-
tration of templates from other repositories and control
this remote notification feature.

Repository Viewer
While developing modules for a personal repository, we
also implemented a repository viewer as one of the de-
velopment support tools. The repository viewer is a
tool for browsing and/or authoring RDF statements
and XML documents stored in a repository. When a
user specifies the URI of a node in the repository, it re-
trieves RDF statements that describe the specified node
as its subject or object. The result is represented in
two ways: graphic representation in a two-dimensional
plane, and list-like representation.

In the graphical view (Figure 2a), the resource node
to which a user is paying attention is located at the
center of the view. Other nodes located around the view
are resources that are arranged in two hops according
to their relationship with the center node. By pointing
to the edge with a mouse, the RDF triple of the edge
is displayed at the bottom of the screen. By clicking
a node on the view, the view is updated to place the
clicked node at the screen’s center. In the listing view
(Figure 2b), the predicate of incoming edges is listed on
the left of the screen, and outgoing edges on the right.
To support direct jumps to other nodes, a list of all
subject nodes is also provided.

Although its current representation is limited, this
tool is helpful in developing our application because it

a) graphical view b) listing view

list of resource URL

Figure 2: The screen image of the repository viewer.

allows us to inspect and modify the items in the repos-
itory while in operation. The tool also monitors the
repository’s event notification framework, so that the
changes in the repository are immediately reflected in
the view.

Toward Defining Vocabularies of
Interaction

To define vocabularies for describing various annota-
tions, we believe that a trial-and-error method is ad-
vantageous; therefore, we first implemented a reposi-
tory along with its interactive RDF viewer using that
method. We are concurrently analyzing interactions in
several specific application domains as the next logical
step.

With regard to ontology definition, there are vari-
ous standard vocabularies suitable for knowledge rep-
resentation. However, it is difficult to find ontolo-
gies on human activities and information handling.
FOAF (Brickley, Miller, & rdfweb-dev listmembers
2002), for example, is one well-known ontology pub-
lished recently that defines vocabularies for describing
individuals and relationships between them. Although
the FOAF ontology proposes “knows” relationships,
and covers vocabularies suitable for introducing indi-
viduals to others, it cannot describe activities of the
individuals.

In the multi-agent framework Shine (Yoshida et al.
to appear), which we have developed to support net-
work communities, we proposed the concept of a “per-
son database.” Applications on Shine can store any
kind of information relating to a “person.” An appli-
cation on Shine, CommunityOrganizer, has been devel-
oped to support the initial phase of informal communi-
ties on the network by assisting users to become aware

of information resources and other people with common
interests. Since it covers several types of interaction
from direct communication by exchanging verbal mes-
sages to indirect communication such as collaborative
recommendation, we plan to focus on defining vocabu-
laries for this application in the next step.

In the following section, we describe the internal de-
sign of two applications, named CommunityOrganizer
and Gleams Of People, which were implemented on
Shine. Those applications are currently being (re-
)implemented on top of the RDF-based repository. An
example vocabulary usage in those applications are il-
lustrated in Figure 5.

CommunityOrganizer
CommunityOrganizer provides a shared space where
public short messages and Web page introductions are
exchanged, and in which people are made to be aware of
possible communities of interests. Figure 3 shows the
primary component of its user interface. Information
items relevant to the user’s interests are shown as icons
on the two-dimensional display. Icons are arranged so
that relevant icons are located closer and form clus-
ters. The view is updated when new information items
are added; therefore, users can become aware of the
dynamic formation of information clusters. In other
words, when several messages concerning a topic are
posted in a short period, the messages (and relevant
resources) move to create an animated cluster.

Since the exchanged messages are similar to e-mail,
they contain header information such as sender, subject,
timestamp of creation time, etc. — fields that are rep-
resented as annotations to a message in RDF storage.
To calculate the relevance, a feature vector is added for
each message to represent the content. The vector is
described as an XML document consisting of a set of

Viewer Setting a Query Vector

Inputting a Message

Figure 3: CommunityOrganizer (screen image)

keyword-value pairs, and the document also becomes an
annotation (content feature) to the original message.

Shine As mentioned before, CommunityOrganizer is
developed using Shine framework. Shine is a peer-to-
peer agent framework that provides basic vocabularies
about agents, users, communication and communities.
The vocabularies defined in Shine provides a start point
for defining vocabularies for personal agent frameworks.

In the Shine, the primary elements of the system
are an agent and its user, so each agent has agentID
and username attributes. From the perspective of the
repository’s owner, other users (in the repository) are
represented as acquaintances.

Nakif In CommunityOrganizer, a hybrid filtering tech-
nique called Nakif is integrated. Nakif incorporates a
content-based method into a collaborative filtering sys-
tem, thus it provides high quality evaluations of com-
munities of interests (Funakoshi et al. 2001).

When a user evaluates a document (assigns a posi-
tive or negative score) in Nakif, the evaluation is shared
among members in the communities of interest. When
a user receives an evaluation, Nakif appends the evalu-
ation as an annotation to the target resource, and up-
dates the evaluator’s user profile vector based on the
evaluation and the content feature of the resource. The
learning module in Nakif gathers those user profile vec-
tors and treats the collection as a user profile matrix.

Vocabularies for Information Sharing In the ap-
plications described above, information resources are
assumed to be stored locally beside the user, and to
become shared gradually through peer-to-peer informa-
tion exchange.

Communication items exchanged between people are
not limited to messages they have written, but also in-

Figure 4: Gleams of People (screen image)

clude introductions to information items that another
person has created. In other words, a message created
by a user can be received by another person through
peer-to-peer intentional message forwarding. In this
sense, forwarded and introduced can be included in
information-sharing vocabularies.

In CommunityOrganizer, introduced Web page re-
sources include an introduced by annotation. In Nakif,
the exchange of evaluation carries this function because
it can indicate the existance of the evaluated document.

Gleams of People
Gleams of People is a very lightweight communication
medium that is designed to convey a simple greeting
(such as “how are you?”) or a message just intended
for keeping in touch.

Figure 4 shows a screen image of Gleams of People.
A message can be sent by touching the sphere corre-
sponding to the intended receiver. The content of the
message is just a ‘color,’ which represents the mood of
the sender. When a message is received at the receiver’s
side, a sphere gleams with the color sent, then the
receiver’s agent automatically sends back its owner’s
mood. In this way, it conveys things that are not so
important to talk about, but that are worth expressing.

The spheres indicate presence and status information
of corresponding users at a grance, and also indicate
history of communication activities unobtrusively; that
is, the interval for which the sphere gleams reflects the
number of messages received from the corresponding
user because it is important to present the communi-
cation history to the user in order to foster social rela-
tionships.

With a personal repostitory, the system can record
the akari status that describes how the gleam is ex-
pressed, and the history of exchanged messages with
respect to its user.

Conclusion
In this paper, we proposed a framework for develop-
ing personal agents that support communication ac-

repository://192.168.16.1/

repository://192.168.16.2/

repository://192.168.16.3/
shine:acquaintance

shine:acquaintance

shine:username

shine:username

akari:akariStatus

repository:root

message: sender

“Koji Kamei”

“Kazuhiro Kuwabara”

nakif:userProfile

:

“ ”

“ ”

:

m
es

sa
ge

:s
en

de
r

akari: pingFrom

akari: r
eplyTo

akari: inReplyTo

message: forwardedTo

nakif: evaluation
nakif:
 documentProfile

message:
contentFeature

"Sen Yoshida"

akari: akariStatus
shine: userName

rdfs:member

URLs

(stored)
 XML
 Documents

Literals

Figure 5: Vocabularies used in existing applications

tivities of individuals. The framework offers an RDF
repository-centered architecture on which a group of ap-
plications and services work collaboratively, supported
by the repository’s event notification mechanism. The
framework and support tools described above have not
been fixed, but they should be improved through expe-
rience in implementing actual interaction-oriented ap-
plications. As a starting point for defining vocabularies
for interaction, we described experiments that imple-
ment existing applications on top of the personal agent
framework.

Acknowledgments
The concept of a personal repository arouse through
continuous discussions with Mr. Kaname Funakoshi
and Mr. Takeshi Ohguro. They also gave us useful
advice for incorporating their works Nakif and Gleams
of People. In addition, we wish to thank to Mr. Takashi
Kawachi for the implementation of the personal repos-
itory and its framework,

References
Abiteboul, S.; Quass, D.; McHugh, J.; Widom, J.;
and Wiener, J. L. 1997. The Lorel query language for
semistructured data. International Journal on Digital
Libraries 1(1):68–88.
Brickley, D.; Miller, L.; and rdfweb-dev listmembers.
2002. FOAF: the ‘friend of a friend’ vocabulary. Tech-
nical report, xmlns, http://xmlns.com/foaf/0.1/.
Buneman, P.; Fernandez, M.; and Suciu, D. 2000.
UnQL: A query language and algebra for semistruc-
tured data based on structural recursion. VLDB Jour-
nal 9(1):76–110.
Funakoshi, K.; Kamei, K.; Yoshida, S.; and Kuwabara,
K. 2001. Incorporating content-based collaborative
filtering in a community support system. In Intelli-
gent Agents: Specification, Modeling, and Applications

(PRIMA2001 Proceedings), number 2132 in LNAI,
198–209.
Huynh, D.; Karger, D.; and Quan, D. 2002. Haystack:
A platform for creating, organizing and visualizing in-
formation using RDF. In Semantic Web Workshop.
Kamei, K.; Fujita, K.; Jettmar, E.; Yoshida, S.; and
Kuwabara, K. 2002. Effectiveness of spatial represen-
tation in the formation of network communities: Ex-
perimental study on community organizer. Interacting
with Computer 14(6):739–759.
Koivunen, M.-R., and Swick, R. 2001. Metadata based
annotation infrastructure offers flexibility and exten-
sibility for collaborative applications and beyond. In
KCAP 2001 workshop on knowledge markup and se-
mantic annotation.
Lassila, O., and Swich, R. R. 1999. Resource de-
scription framework (RDF) model and syntax spec-
ification. Technical report, W3C Recommenda-
tion, http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.
Nejdl, W.; Siberski, W.; Simon, B.; and Tane, J.
2002. Towards a modification exchange language for
distributed RDF repositories. In ISWC2002, number
2342 in LNCS, 236–249. Springer-Verlag.
Ohguro, T. 2001. Towards agents which are suggestive
of “Awareness of Connectedness”. Trans. IEICE E84-
D(8):957–967.
Stojanovic, L., and Motik, B. 2002. Ontology evolu-
tion within ontology editors. In EON2002 Evaluation
of Ontology-based Tools, 53–62.
Yoshida, S.; Kamei, K.; Ohguro, T.; and Kuwabara,
K. (to appear). Shine: A peer-to-peer based frame-
work of network community support systems. Com-
puter Communications.

